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THEORY OF SEPARATION OF VARIABLES FOR LINEAR PARTIAL DIFFERENTIAL
EQUATIONS OF THE SECOND ORDER IN TWO INDEPENDENT VARIABLES
by Marvin E. Goldstein

Lewis Research Center

SUMMARY

Necessary and sufficient conditions which any linear second-order partial differential
equation in two independent variables must meet whenever it can be transformed into a
separable equation are given. These conditions are used to develop a calculational pro-
cedure for determining whether any given equation of this type can be transformed into a
separable equation and also to develop a procedure for determining the various changes
of variable which will lead to separable equations.

INTRODUCTION

Perhaps the most useful way of obtaining solutions to linear partial differential equa-
tions is the method of separation of variables. Unfortunately this method is only appli-
cable to a small number of equations. However, the applicability of this method can be
increased somewhat if the variables in the differential equation are transformed before
the method is applied. It is therefore useful to be able to tell whether a given partial dif-
ferential equation can be transformed into a separable equation (that is, an equation which
can be solved by the method of separation of variables) by changing both its dependent
and independent variables.

We shall therefore give necessary and sufficient conditions which the coefficients of
any second-order linear partial differential equation in two independent variables must
satisfy in order that the equation be transformable into a separable equation. These con-
ditions require that the coefficients (or more precisely, certain combinations of the coef-
ficients) be expressible in certain functional forms. Since it may not always be easy to
tell in practice simply by inspection whether a given set of coefficients can be expressed
in this way, alternate forms of these conditions are given which allow the coefficients of
a given equation to be tested by direct calculation. In order to use the procedures de-
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veloped for this purpose, it is required in the worst situation that the solution to an or-
dinary differential equation be found.

In addition, if it is found that a given equation can be transformed into a separable
equation, then the formulas developed herein can be used to calculate all the possible
transformations which will bring the equation into separable form.

Some incomplete or limited studies along these lines have already been carried out.
Thus, in references 1 and 2, all the possible conformal transformations which trans-
form the separable equation

v2U +x2U = 0

into another separable equation have been enumerated. (V2 will always be used herein
to denote the two-dimensional laplacian.) In reference 1, kz is taken as a constant and,
in reference 2, k2 is taken to be a constant divided by yz where y is one of the orig-
inal independent variables. In reference 3, sufficient conditions for the equation

to be transformable into a certain type of separable equation are given. Boussinesq
(ref. 4) showed that the equation

VU + Vg - VU =0

where ¢ is a given harmonic function, can always be transformed into a separable equa-
tion by transforming both the dependent and independent variables, the tranformation of
the independent variables being a conformal transformation. A slight generalization of
Boussinesq's result is given in reference 5. It was shown there that the potential could
be a slightly more general function.

All these results will emerge as special cases of the general theory developed here-
in. Limited results for special equations in more than two independent variables are
given in references 1 and 5 to 9.

We begin by finding the restrictions that are imposed on an equation by the require-
ment that it be separable. It turns out that it is convenient to distinguish between those
equations for which the method of separation of variables leads to two ordinary differential
equations of the highest possible order consistent with the type of partial differential equa-
tion and those for which it does not. Only the former type of equations are called separ-
able herein. The latter type are called *"weakly separable but not separable.'* However,
since the method of separation of variables often leads to useful results even when an
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equation is weakly separable but not separable (ref. 10), this case is also considered in
detail.

The various algebraic transformations which can be applied to a differential equa-
tion are discussed. It is then determined what restrictions are imposed on these trans-
formations by the requirement that they transform a given partial differential equation
into a separable equation. Once this is done, the restrictions imposed on the coefficients
of the original equation can be found. It turns out that this is best accomplished by con-
sidering the elliptic, parabolic, and hyperbolic equations separately.

We shall assume that all the functions which are encountered can be differentiated
as many times as is necessary. We shall say that the function f of two variables is not
equal to zero and write f # 0 if it takes on the value zero only at discrete points (or, at
most, along line segments).

SEPARABLE EQUATIONS

The most general second-order linear and homogeneous partial differential equation
in two independent variables has the form

2 2 2
alU 9 %0 ,, 00 AU ., g3  cu=0 (1)
2e2 st on | L2 ok ok

where the coefficients «, B8, v, A, B, and C are real functions of ¢ and 7. We shall
suppose that «, 8, and 3 are not all zero, for this would imply that equation (1) was in
reality a first-order equation. We shall also require that «, 8, and A (or v, 8, and
B) are not all zeros. Otherwise, equation (1) could be essentially an ordinary differen-
tial equation.

Equations of this type are further classified by the sign of the discriminant [32 - ay.
Thus, if

B -~ ay >0 (2)
the equation is said to by hyperbolic. If

2

B ~ay=0 (3)

the equation is said to be parabolic, and if



2-ay<0 4)

B
the equation is said to be elliptic. We shall always assume that the domain of definition
of the equation has been restricted in such a way that the sign of the discriminant does
not change. This assumption will simplify the following presentation but will not affect
its generality. It is well known that the type of boundary value problems which can be
solved by an equation of the form (1) depends only upon whether this equation is hyper-
bolic, parabolic or elliptic.

When the coefficients of equation (1) satisfy certain restrictions, this equation can
be solved by the method of separation of variables. This method consists of substituting
the trial solution

U(£,n) = E(§H(n) (5)
into equation (1) to obtain
1 —_- iy 1 ' 1 -t
— (@E" +AE") += (yH" +BH') +C +-—— 2BE'H' =0 (6)
) H =H

where the primes denote differentiation of the functions with respect to their arguments.
Now suppose it is possible after division by (H'/H)n(E'/E)mf for some nonzero function
f of £ and 7 and n, m =0 or 1, to write equation (6) as the sum of two terms, one of
which is a function of £ only and the other a function of 7 only, for all choices of the
functions = and H. Then since £ and 7 are independent variables, we can conclude
that the trial solution (5) satisfies equation (1) only if each of these terms is equal to a
constant (called the separation constant). This, in turn, implies (in view of the assump-
tions made about the vanishing of the coefficients) that = and H must each satisfy an
ordinary differential equation and that, if = and H do satisfy these equations, then
equation (5) is indeed a solution of equation (1). Each of these ordinary differential equa-
tions is of, at most, second order. Hence, = and H can each involve two arbitrary
constants of integration. Since the separation constant is also arbitrary, it is clear
that the solution (5) can contain at most four arbitrary constants. Thus, if the separ-
ation of variables method works, it will lead to an, at most, four-fold infinite family of
solutions to equation (1). If the family of solutions obtained by this method is suffi-
ciently large, it is possible to express any reasonable solutions as a linear combination
of members of this family. The family is then said to be complete. If equation (1) is
either hyperbolic or elliptic, it is possible in some cases to obtain two second-order
ordinary differential equations when the method is applied.

Equation (1) will be called separable only if the method of separation of variables can



lead to two ordinary differential equations of the highest possible order consistent with
the type of partial differential equation. Thus, if equation (1) is either hyperbolic or
elliptic, it is said to be separable only if the method of separation of variables leads to
two second-order ordinary differential equations. It will be shown below that in the par-
abolic case the method can lead to, at most, one first-order and one second-order ordin-
ary differential equation. Therefore, a parabolic equation will be called separable if the
method of separation of variables leads to one first-order and one second-order ordinary
differential equation.

The method of separation of variables is sometimes useful (see ref. 10) even when
it does not lead to ordinary differential equations of the highest possible order. There-
fore, we shall call equation (1) weakly separable if the method leads to two ordinary dif-
ferential equations regardless of their order. Notice that separation solutions to weakly
separable equations involve at least two arbitrary constants and that every separable
equation is weakly separable.

In order that equation (1) be weakly separable, it is first necessary that, for arbi-
trary = and H, equation (6) can be written as the sum of two terms one of which is a
function of £ only and the other a function of 7 only. It is clear that this cannot occur
unless at least one of the coefficients «, 3, or 7 is equal to zero.

First, suppose that equation (1) is elliptic, then condition (4) implies that o # 0 and
v # 0. This implies that equation (1) is both elliptic and weakly separable only if 3 = 0.
In addition, the coefficients of E'' and H'' in equation (6) never vanish and therefore
the method of separation of variables, if it works, will always lead to two second-order

ordinary differential squationg. Thuas, an elliptic equation iz separable if, and only if,

be weakly separable even if g # 0. However, if 2 # 0, then ai lsast ons of the cosffi-
cienta & and 3 must be zerg if equation {1} iz to be weakly zeparable. Thus, at least

of geparation of variables cannot lead to twe second-order ordinary differential equations.




This shows that equation (1) cannot be hyperbolic and separable unless 8=0. If B3 were
zero, then condition (2) shows that @ # 0 and y # 0. Hence, if equation (1) is hyperbolic
and B =0, then it is weakly separable if, and only if, it is separable.

The preceding discussion allows us to arrive at the following conclusions:

(C1) In all cases equation (1) is separable only if g8 =0.

(C2) Equation (1) is weakly separable but not separable only if it is hyperbolic and
g #0.
(C3) If equation (1) is parabolic and separable or if it is weakly separable but not
separable, then either @ =0 or y=0.

Now suppose that 8 = 0. Then equation (6) becomes

(@=" +AE") +%(y " +BH) +C =0 (7

I | =

It is clear that, for arbitrary = and H, this equation can be written as the sum of two
terms, one of which depends on £ and the other only on 7 if, and only if, the coeffi-
cients «, 7, A, B, and C can be expressed in the following forms:

a(g,n) =1(&,n) d,(9) (8)
NE,m) =1(&,7) eqy(n) (9)
A(E,m) =1(&,m) dy(¥) (10)
B(§,m) = 1(£,7) eq(n) (11)
C(&,m) = 1(5,m[dg(8) + eg(m)] (12)

where f # 0, d1 and d2 are not both zero, ey and ey are not both zero, and d1 and
ey are not both zero. These restrictions follow from the restrictions placed on the van-
ishing of the coefficients of equation (1). Thus, the conditions (8) to (12), together with
the condition

B=0 (13)

imply that equation (7) is weakly separable, and conclusion (C2) shows that they also impl
that equation (1) is separable.

Conversely, suppose that equation (1) is separable. Then conclusion (C1) shows that
condition (13) holds. Thus, equation (7) must be expressible as the sum of two terms one



of which depends only on £ and the other only 7. But this implies that conditions (8)
to (12) hold. Hence, we arrive at the following conclusion:

(C4) Equation (1) is separable if, and only if, its coefficients satisfy conditions (8)
to (13).
There are additional restrictions imposed on the functions d; and e; by the sign of the
discriminant 62 - ay of equation (1). The conditions (8), (9), and (13) show that if equa-
tion (1) is separable, then

‘32 -y = —fzdlel (14)
Suppose first that equation (1) is hyperbolic. Then equations (2) and (14) show that
dj(E)e,(m) <0

at each point (£,7) of the domain of equation (1) This shows that the sign of dl(é) is
different from the sign of el(n) at each point. Since £ and 7 are independent varia-
bles, this, in turn, implies either that

d; >0 and ey <0
or that

dy <0 and e4 >0
However, in view of the symmetry of equation (1) and of conditions (8) to (13), no gener-

ality will be lost if we assume that the first of these always holds.
Next suppose that equation (1) is parabolic. Then equations (3) and (14) show that

d;(E)ey(m) = 0

at each point (£,7) of the domain of equation (1). Again since & and 7n are independent
variables, this shows that either

e1=0

or



We have already indicated that both these conditions cannot hold simultaneously. Hence,
in view of the symmetry of equation (1) and of conditions (8) to (13), no generality will be
lost if we assume

Finally, suppose that equation (1) is elliptic. Then equations (4) and (14) show that
dy(&)e; () >0

at each point (£,7) of the domain of equation (1) This shows that the sign of dl(ﬁ) is
the same as the sign of el(n) at each point (£,7). Since £ and 7 are independent var-
iables, this, in turn, implies either that

d1>0 and e1>0

or that
d1<0 and e1<0

It can be seen, however, from conditions (8) to (13) that no generality will be lost if we
assume that a minus sign has been absorbed into the function f. We therefore assume
that the first of these conditions always holds.

We have therefore shown that the functions dq and e 1 satisfy the following restric-

tions:

d; >0 and e; <O (15)
if equation (1) is hyperbolic,

d;#0 and e;=0 (16)
if equation (1) is parabolic, and

d1>0 and e1>0 (17

if equation (1) is elliptic.
Now suppose that 8 # 0, ¥y #0, and a = 0. Then equation (6) becomes



(18)

+L (yH" +BH' +CH) + L 282" = 0
% and H, this equation

A
H!

ul | o
e IIII

Since ¥y and B are not zero, it is clear that, for arbitrary
can be written as the sum of two terms, one of which depends only on £ and the other
(19a)
(20a)

only on 7 if and only if the coefficients «, 8, v, A, B, and C can be expressed in the

a(&: 7]) =0
(21a)

following form:
B(&,n) =1(&,m)d(8)
v(§,m) =1(&,me (M)
A(g,n) =0 (22a)
(232)
(24a)

B(&,m) = 1(£,7)[eg(n) + dy()|

C(&,m) =1(§,meg(n)

where f#0 and d, # 0. Similarly, if g§# 0, ¢ # 0, and y =0, the resulting form of
and H, be written as the sum of two terms with one

equation (6) can, fo:xl' arbitrary =
of them depending only on £ and the other only on 7 if and only if the coefficients «,
B8, ¥s A, B, and C can be expressed in the form
a(k,n) = £(&,n)d(£) (19b)
B(&,n) =1(£,m)e (n) (20D)
v(&,n) =0 (21b)
A(E,m) = £(2,m)[dy(2) + eq(n) (22D)
(23b)
(24b)

B(ﬁﬂ?) =0

C(&,m) =1(§,m)dg(8)

where f #0 and ey # 0. Finally, if B8+#0, @ =0, and y =0, the resulting form of
and H, be written as the sum of two terms with one

—t
=)
=

equation (6) can, for arbitrary



of them depending only on £ and the other only on 7 if, and only if, the coefficients «,
B, ¥, A, B, and C can be expressed either in the form (19a) to (24a) or in the form
(19b) to (24b). Thus, either the conditions (19a) to (24a) or the conditions (19b) to (24b)
taken together with the condition

B+0 (25)

imply that equation (1) is weakly separable and conclusion (C1) shows that they also imply
that equation (1) is not separable.

Conversely, suppose that equation (1) is weakly separable but not separable. Then
conclusion (C2) shows that condition (25) holds, and conclusion (C3) shows that either
a =0 or v =0. Thus, the appropriate form of equation (6) (depending on whether « =0
or B = 0) must be expressible as the sum of two terms with one of them depending on &
only and the other on 7 only. But this implies that either conditions (19a) to (24a) or
conditions (19b) to (24b) hold. This shows that the following conclusion holds:

(C5) Equation (1) is ‘weakly separable but not separable if, and only if, its coeffi-
cients satisfy condition (25) and either conditions (19a) to (24a) or conditions (19b) to (24b).

The conditions obtained above show that only a very small percentage of all the
second-order linear partial differential equations in two independent variables are even
weakly separable. However, a somewhat larger percentage of the second-order linear
partial differential equations can be transformed into weakly separable equations by
changing either their dependent or independent variables. Hence, the usefulness of the
method of separation of variables can be extended by using it in conjunction with a change
of variables. We therefore develop a procedure for determining whether a given second-
order linear partial differential equation can be transformed (by changing either the de-
pendent or independent variables) into a weakly separable equation. In addition, when-
ever a given equation can be so transformed, a method for calculating the appropriate
change of variables will be given.

ALGEBRAIC TRANSFORMATIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
Only a change in the dependent variable which is of the form

where A is any nonzero function of £ 7, will transform the linear homogeneous differ-
ential equation (1) into another linear homogeneous equation. Hence, only transforma-
tions of this type are appropriate for our purposes. The allowable transformations of the

10



independent variables are much less restricted. Any change in the independent variables
‘of the form

X= X(g,n)
27
y =y(&,m)
where X and y are any functions of £ and 7 such that
x,9) 4 g (28)

a(£,m)

will transform equation (1) into another linear homogeneous partial differential equation.
Hence, all transformations of the independent variable which satisfy condition (28) will
be considered.

It is important to notice (refs. 3 and 11) that both a change of variable of the type (26)
and one of the type (27) will leave the sign of the discriminant invariant. Thus, any
change of variable which is of interest for the present purpose will always transform
hyperbolic equations into hyperbolic equations, elliptic equations into elliptic equations,
etc. This fact is very useful in the following analysis.

Up to this point it has been convenient to consider any two differential equations which
have different coefficients as being completely different equations. We shall sometimes
change this point of view slightly and consider two differential equations which can be
transformed into one another by a transformation of the type (26) or of the type (27) as
being different forms of the same equation.

Recall now that every second-order linear and homogeneous partial differential equa-
tion can, by a change of variable of the type (27) be transformed into one and only one of
three canonical forms, depending on the sign of the discriminant. Thus, every
hyperbolic equation can be put in the form (ref. 11)

2 2

U U, ,0U U, cu=0 (29)
2

ox

ayZ ox oy

Every parabolic equation can be put in the form

2
_aU+aig+bﬂ+cU=0 (30)
ax2 ox oy

and every elliptic equation can be put in the form

11



2 2
H+a—g+aig+bﬂ+cU=O (31)

8x2 ayZ ox oy

where the coefficients a, b, and ¢ can be any functions of x and y.

Hence, no generality will be lost if we assume that this transformation has already
been carried out and therefore that the differential equation under investigation is already
in one of these three forms. We also see from the preceding remarks that even though
it is necessary to specify four functions (since eq. (1) can always be divided through by
one of the coefficients of its highest derivatives which cannot all be zero) in order to
characterize any second-order linear homogeneous partial differential equation in two
independent variables, at most only three functions (namely, the three coefficients a, b,
and c appearing in the canonical form of the equation) need be known to determine
whether the equation can be transformed into a weakly separable or a separable equation.
We shall see that in fact only two functions need be known for this purpose.

If the coefficient b in equation (30) is zero, this equation is essentially an ordinary
differential equation and can be solved as such. We therefore exclude this case by im-
posing the restriction b # 0. With this restriction it is easy, though somewhat tedious,
to verify that equations (29) to (31) can never be transformed by a change of variable of
the type (26) or of the type (27) into an equation whose coefficients violate the restrictions
listed directly after equation (1). Since the only equations which occur herein arise as
a result of applying transformations of these types to equations of the form (29) to (31),
these restrictions will always be met.

It will be proved subsequently that a change of dependent variable of the form (26)
applied to any equation in one of the canonical forms (29) to (31) transforms this equation
into one which has the same canonical form (only the coefficients a, b, and ¢ are
changed). Since the order in which the transformations (26) and (27) are applied to a
given equation is immaterial, the combined effect of applying a transformation of the
type (26) and one of the type (27) to a given equation can be analyzed as follows. First,
determine what conditions must be satisfied by the coefficients of an equation which is in
one of the canonical forms (29) to (31) and which in addition can be transformed into a
weakly separable or a separable equation by a change of variable of the type (27). Once
this is done, it is only necessary to decide which of the differential equations having this
canonical form can be transformed by a change of variable of the type (26) into an equa-
tion whose coetfficients satisfy these conditions in order to determine which of the equa-
tions in this canonical form can be transformed by a combined change of variable into a
weakly separable or a separable equation.

12



TRANSFORMATIONS OF THE DEPENDENT VARIABLES

Apropos of these remarks, we now turn to a discussion of how equations of the types
(29) to (31) transform under a change of variable of the type (26). This material is en-
tirely equivalent to that given in reference 3. However, it is convenient to rederive some
of the results in a form which is more suitable for our purposes.

First, consider the hyperbolic equation (29). Substituting

V(x,y) = Ax,y)Ux,y)

into this equation yields

Vix = Vyy + 2V +‘5Vy+cV=o (32)
where
~ 2
a=a-x>\x (33)
~ 2
b=b+2x (34)
A Y
by 2X X 21
~ 1 X X y y
c=c-=(__-Aa )-—la-—=)-2<L|b+—= (35)
A XXV A( A) A< x>

This proves that, when a transformation of the type (26) is applied to an equation of the
type (29), the form of the equation is unaltered. Evidently,

2 2
C-l@2 v -c-l@2opy i X )| WY
4 4 A A A A2
2
A A
~ XX X
SR Su
A
5 'y Ny
b.=b_+2|=L-2
y y A )\2

13



Hence,
¢-la@ +b)-1@2-BH-c-L@, +b)-1@%-bH (36)
2 Y4 2 X YV 4
and
ag +3X =ag +by (37)
Now define
Iy = ag +by (38)
1 1,2 .2
jH_c_Ex%{+%)_zxa - b%) (39)

Equations (36) and (39) then show that, unlike the coefficients themselves, the quantities
"‘H and /H are unaltered when a tranformation of the type (26) is applied to an equation
which has the form (29). They will therefore be called the canonical invariants for an
equation of the hyperbolic type.

Now consider the parabolic equation (30). Substituting

V(x,y) = Mx,y)UE, )
into this equation yields
Vey +2Vy +‘|5Vy +CV=0 (40)
where

A-a-22 (41)
A

14



o
il
(=8

(42)

by
'E:c_al)\x-bl)\ _§+ik}2{ (43)
A A YA 52

This proves that when a transformation of the type (26) is applied to an equation of the
type (30) the form of the equation is unaltered. Evidently,

52 13 _c.1,2_ 1, _,1,
2

X 4 2 X Ay

~
C -

[T TS

Hence,

Therefore, it follows from equation (42) that

B b
) ) 69)
2 2 2‘6X . ‘By
b b b
:12(:__1.212—_}(_ - (a + X —G-‘*"—x) (44)
b 2 2b 2b/. b/

Jp=Db (45)

2
b b b
2c_l a2- X -la + X -i a+-= (46)
2 2b 2b oy b

Equations (42) and (44) show that the quantities "‘P and jP are unaltered when a trans-
formation of the type (26) is applied to an equation which is in the form (30). They shall
be called the canonical invariants for the parabolic equations.

Finally, consider the elliptic equation (31). Substituting

TU=

Now define

0
0x

s

T |

P
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V(x,y) = AMx,y)UE,y)

into this equation yields

Vex * Vyy +3AV, +‘5Vy+’6V=o (47)
where
~ 2
a_a-x)\x (48)
& 2
b=b-22x
b ~1y (49)
N 1 ) Ay Kx) xy< Ay (
c=c-=-(, +r )-Zla-2FX})-T(|pb-2F 50
A XXy A( PNV EDY A )

This proves again that, when a transformation of the type (26) is applied to an equation
of the type (31), the form of the equation is unaltered.
As before, it again follows easily from equations (47) to (50) that the quantities

Sg =2y - by (51)

1 1,2 2
/E=C'E(ax+by)"z(a +b%) (52)

are unaltered when a transformation of the type (26) is applied to an equation which has
the form (31). They will be called the canonical invariants for the equations of the elliptic
type.

We have therefore shown that

(C6a) An equation which is in one of the canonical forms (29) to (31) is transformed
into an equation of the same form by any gh_a_ng_e of deprendgnt_vq_riableﬁf the type (v26)

(C6b) For each of therééngl}ical forms (29) to (31), thef'e are twoqu—lant‘itfies—, called
the canonical invariants, which are unaltered when a transformation of the ’;ipe (2 6) is
applied to an equation wlych has that canonical form. . B

TRANSFORMATIONS OF THE INDEPENDENT VARIABLES

Having discussed the effects of transformations of the type (26) on the canonical

16



forms (29) to (31), we now turn to a discussion of the effects of transformations of the
type (27) on these canonical forms. To this end notice that the three canonical forms (29)
to (31) can be combined into the single equation

2 2
99U 380,290 . »WU  cu=0 for j=-1,0,1 (53)

aXZ ayz ox ay

It is convenient to define the linear operator L(j) for j=-1, 0, 1 by

. 2 2
1) =2U ;37U ,, U0,y U gor j=-1, 0, 1 (54)

ax ay2 0x oy

When the general transformation

£ =ox,y) 3(e,9) 4 o

55
3(x,¥) 59

n= %U(X, Y)

of the type (27) is applied to equation (53), an equation of the form (1) with discriminant
D= 32 - ay is obtained. The coefficients of this equation depend only on the coefficients
of equation (53) and the functions ¢ and Y. In order to determine this dependence, it

is only necessary to apply the chain rule and then substitute the results into equation (53).
Thus,

Uy = Ugo, + Uiy
Uy = Ugpy +Updy
U, =U, 02 +2U, oy +U._y2 +Up.. + U Y
XX EETx EnTx¥x mrx £V xx nvxx
2 2
Uyy = Uge@y +2Ugnoy¥by + Uppiby + U@y + Upibyy

Substituting these results into equation (53) and collecting terms reveals that the coeffi-
cients in equation (1) are determined by the following equations: '

a = 99,‘9; +J'<P?, (56)
B =gy +ivgdy (57)

17



y=v2 (58)

y
a = L9(y) (59)
B = LO(y) (60)
C=c (61)

TRANSFORMATIONS WHICH LEAD TO SEPARABLE EQUATIONS

Equation (1) is separable if and only if its coefficients satisfy conditions (8) to (13).
Hence, it follows from equations (56) to (61) that equation (53) can be transformed into a
separable equation by a change of variable of the type (55) if, and only if,

td; = 9% +o3 (62)
0=y +iogdy (63)
feg = y2 +v2 (64)
td, = L(p) (65)
fe, = LU (y) (66)
f(d3 +eg)=c¢ (67)

where the d for k = 1, 2, 3 are functions of £ = ¢(x,y) only and the e, for k= 1,
2, 3 are functions of 7 = Y¥(x,y) only. It has already been pointed out that the sign of the
discriminant of the equation of type (1) which results from the transformation (55) must
be the same as the sign of the discriminant of equation (53). Hence, it follows from con-
ditions (15) to (17) that

d; >0 and e; <0 (68)
if equation (53) is hyperbolic (i.e., if j=-1),

18



if equation (53) is parabolic (i.e., if j = 0), and
d; >0 and e; >0 (70)

if equation (53) is elliptic (i.e., if j = 1). These conditions are, in fact, direct conse-
quences of equations (62) to (64).

On the other hand conclusion (C2) shows that equation (1) can be weakly separable
but not separable only if it is hyperbolic. Since the type of equation cannot be changed
by a transformation of the form (27), we conclude that equation (53) can be transformed
into a weakly separable but not separable equation by a transformation of the type (27)
only if it is hyperbolic. Now equation (1) is weakly separable but not separable if, and
only if, its coefficients satisfy condition (25) and either conditions (19a) to (24a) or con-
ditions (19b) to (24b). In view of the symmetry of these conditions, however, we can as-
sume without loss of generality that only conditions (18a) to (24a) are relevant. Hence,
it follows from equations (56) to (61) that equation (53) can be transformed into an equa-
tion which is weakly separable but not sepai-a}tlle by a change_ of variable of the type (55)
if, ;;nd_only if , it 1s hyperbolic and o ' '

0= 90}2( - qvf, (71)

) = iy - 9y # 0 (72)
fe, =2 - wf, (73)

0= L&) (74)

fleg +dg) = LN () (75)
feg = c (76)

At this point, it is convenient to consider the three equations (29) to (31) individually.
We discuss the hyperbolic equation (29) first.

EQUATIONS OF HYPERBOLIC TYPE (j = -1) - SEPARABLE CASE
Functional Form of Invariants

First, suppose that equation (29) can be transformed into a separable equation by a
change of independent variable of the type (55). Then the functions ¢ and Y must sat-
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isfy conditions (62) to (67) with j = -1 and dy >0 and eq <0. It is therefore permis-
sible to introduce the (real) functions

Y

and

1

‘/'.e_l

and to define a (real) function U of ¢ only and a (real) function Vv of 7 only by

Wy = [ L _at 77
¥ / = (17)

(78)

v(n) = / —L
Thus, there are functions u and v of x and y such that

u(x,y) = e, y)] =U(E)

v(x,y) = Vwlx,y)] =Vm)
We shall suppose that these equations can always be solved for ¢ and y (if necessary

the domain of the differential equations can be divided into a series of subdomains in
which these equations can be solved) to obtain

£ = o(x,y) = ¢lulx,y)] (79)

and

n = Wix,y) = Yv(x,y)] (80)

Therefore, it follows from equation (77) that
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~ -1
99 _dp du _(du @:Vdﬁ‘l (81)
ox du ox <£) 1ax

In a similar way, we find

%o - ‘/E;ﬂ (82)

ay ay
Y - v (83)
ox ox
W e (84)
ay ay
Hence,
2 2. dy/d 2
To o Ja e VI <@>
aXZ 8x2 dé ox
2 2
= V9 Ju, 1 dy (ﬂ) (85)
2 2 X
ox
Similarly,
2 2 2
R V& Zu,lg, (o (86)
3 2 3 2 2 oy
y y
oy _ s P 1 e'1<2!>2 (87)
axz axz 2 ox
Py _ e v 1 e (ﬂ)g (88)
7y ay? 2 oy

It now follows from definition (54) and equations (81) to (88) that
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1),y 1 [fau)2  [ou)? (-1)
L )(¢)__2_d1{:<5_;1) «?;)} CR ARSI (89)

2
-1 1,1{0 21 — (-1
u )(w)=-591[<-é—;> _<%> AR A 0

Substituting equations (81) to (84), (89), and (90) into conditions (62) to (67) with j =-1
yields

f= \1}2{ - u?, (91)
0=uyv, - ug vy (92)
d=vE- vf, (93)
td, =% a (ui - uf,) + 9 LD (94)
1 ,(2 .2 -1
feg = ——2- e (Vx - vy) + ‘/—e1 L( )(V) (95)
f(dy +eg) = C (96)

Upon substituting equation (91) into equations (94) and (96) and equation (93) into equa-
tion (95) we find

L) = q, (uf; - uf,) (97)
L('l)(v) = -€y (vi - vf,) (98)
c=(dg + e3) (ui - u?{) (99)

where the function d4 of & only and the function ey of 1 only are defined by
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In view of equations (79) and (80) we see that there are functions p; and Py of u only
and functions 4 and 9 of v only such that

Py (W) = dg(8) = dgfF(u)
Po(u) = d,[3 ()]
a3(%) = e3[W(v)

D) (v) = 64[1;(")]

Substituting these into equations (97) to (99) yields

V) = (o - wl)py (100)
L&) = (2 - Py (101)
c = [pl(u) + ql(v)]<u§ - u)zr) (102)

Equations (91) and (93) show that

2 2
Uy - ug = Vo - vy (103)
or multiplying both sides by v}z,

2 2 2 2(2 2
Vyl.lx - (vyuy) = Vy<Vy Vx>

Eliminating v yuy between this equation and equation (92) yields

2 2 2 2
Vyly = UgVy = vy(vy - Vx)

or
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2 2
Uy = Vy
Hence,
u, = :t;vy (104)

Substituting this result into equations (92) and (103) shows that

vy = g (105)
where the plus sign in equation (105) must be associated with the plus sign in equa-
tion (104), and the minus sign in equation (105) must be associated with the minus sign in
equation (104).
Differentiating equation (104) with respect to x, differentiating equation (105) with
respect to y, and subtracting the results yields

Ugy = Uyy = 0 (106)
Similarly,
Vex ™ Vyy = 0 (107

The most general solutions of these two equations are

u=lrx+y) +1Gx-y) (108)
2 2
1 1

v==Fx +y) += Gx - y) (109)
2 2

where F and rf‘ are any functions of x +y, and G and 5 are any functions of x - y.
However, upon substituting equations (108) and (109) into equations (104) and (105) we
find that
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F' +G' = +(F' - G")

and
F' - G' = +(F' +G'")

or

F' = +F'
and

-G' = @'
Hence,

V=:1:E Fix +y) -%G(x— y)} (110)

Since the general form of conditions (100) to (102) remains unaltered if we replace
v by -v, no generality will be lost if we assume that only the plus sign holds in equa-
tion (110). Hence, we conclude that the functions u and v must have the following

form:
u=1r0) +lam (111)
2 2
v=1%0)-1cw (112)
2 2
where
CEX +y (113)
T=EX-Y (114)

and F and G are any nonconstant functions of their arguments. (The functions F and
G are nonconstant because f = (u}z( - u2 =F'G'#0.)

It follows from definition (54) and equations (100), (101), (103), (106), and (107) that
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au, +buy = pz(u)<u}2{ - u32,>
avy + bvy = qz(v)(ui - u}2,>

Multiplying the first of these equations by vy and the second by uy and then sub-
tracting the resulting expressions yields

a(uxvy - quy) = (pzvy - qzlly) (11)2{ - 1.1327)

By eliminating v_ and uy from this equation by using equations (104) and (105) we find that

y
a(uf{ - u§> = (pzuX - qzvx)<u}2{ - u}2,>

or since f=u}2{-u32,¢0

a = Pyl - ay(VV, (115)

In a similar way, we find that

b = -[py(wu, - ay(v)vy] (116)

Equations (102) and (111) to (116), in which p;, Py, 4y, 4y, F, and G can be any func-
tions of their arguments, now give the most general form that the coefficients of equa-
tion (29) can have if this equation is to be transformable into a separable equation by a
change of variable of the type (55). For the present purpose, however, it is more con-
venient to work with the canonical invariants of equation (29) rather than with its coeffi-
cients themselves. To this end we differentiate equations (115) and (116) with respect to
x and y to obtain

8 = D)y, - (V¥ +PhZ - ah(VIVE
ay = Py - AV + Py - GBIV, vy
by = -[pz(u)uxy - ag(Mvyy + ph(Wu,ug - qﬁ(V)vxvy]

by = —[pz(u)uyy - Qy(vyy + pfz(u)u?, - Q_'g(V)Vf,}
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These equations together with equations (103), (106), and (107) show that

a +by =0 (117)

and

a, + by = [p'z(u) + q'z(v)](ui - u?,) (118)

Also equations (92), (103), (115), and (116) show that

a2 - b2 = {[pz(u)]z - l:qz(v)]z}(ui - u?,) (119)

Substituting these results together with equation (102) into the definitions (38) and (39)
of the canonical invariants of equation (29) shows that

g=0 (120)

and
Al i) bl ) e
H 1 9 2 4 2 175 2 4 2 X y

Or upon defining the function & of u and the function ¥ of v by

B(u) = py () - % py(u) - i [p,w)]?

- 1y 1 2
¥(v) = q4(v) 5 a(v) + " [qz(V)}

equation (121) becomes
Sy = [8) + 9] (uf( - ui) (122)

Thus, equation (29) can be transformed (by changing its independent variables) into a
separable equation only if there are functions & and ¥ of u and v, respectively, such
that its canonical invariants satisfy conditions (120) and (122).

Now suppose that equation (29) can be transformed into a separable equation by
changing both its dependent and independent variables. Since the order in which these
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p—— i R

transformations are performed is immaterial, it must first be possible to transform this
equation by a change of variable of the type (26) into an equation whose coefficients satis-
fy the conditions (102), (115), and (116). But this implies that equation (29) can be trans-
formed into an equation whose canonical invariants satisfy conditions (120) and (122).
Since the canonical invariants of equation (26) are unaltered by a transformation of the
type (26), we conclude that if equation (29) can be transformed into a separable equation
by changing both its dependent and independent variables, then it is necessary that its
canonical invariants satisfy conditions (120) and (122).

In order to see that these conditions are also sufficient, suppose that there exist
functions & and ¥ such that conditions (120) and (122) hold with u and v given by
equations (111) and (112) for some functions F and G. Then it follows from definition
(38) that condition (120) implies that there exists a function w such that

(123)

e
I
1
€

and therefore definition (39) shows that

1
jH=c'E(wxx'

It is now easy to see from equations (32) to (35) that in this case the change of variable
(ref. 3)

V= e¥/2y (124)
transforms equation (29) into the equation
Vex - Vyy + V=0 (125)
or, substituting equation (122),
Vg = Vyy * [ (u) +\If(v)](u}2{ - uf,)V =0 (126)

Upon introducing the new independent variables u and v defined by equations (111) to
(114) we find that

Vix - Vyy = (Vuu - VVV)F'G'
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and
2 2 _
Uy - up = F'G' (127)
Substituting these results into equation (126) shows (since F' # 0 and G' # 0) that

.Vuu - Vou *+ [ +¥m]V =0 (128)

and this equation is certainly separable.

If any functions ¢ and Y which satisfy equations (79) and (80) were used as the new
independent variables in place of u and v, then instead of equation (128) we would have
arrived at the equation

1 a( 1 V§> S S ( 1 v>+{q>['ﬁ(§)] +xp[7(n)]}V=o (129)

W) 0 \W' (D) V) on \w(@m

where u and v are the solutions of equations (79) and (80), respectively, for u and v
in terms of £ and 7, respectively. It is easy to see that this equation is also separable.
We have therefore established the following conclusions:

(C7) The canonical hyperbolic differential equation (29) can be transformed into a
separable equation by changing both the depeﬁdent and independent variables if, and only
if, there exist functions & and ¥ and nonconstant functions F and G such that the
canonical invariants "H and /H satisfy the following ‘conditions:

JH =0 (130)
-
Sy =[o@ +v )] - u?)
where
u =% F(o) +§ G(7) . (131)

v=2%0) -Lam
2 2

0=x+y and 7T=X-Yy )
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(C8) If the canonical invariants of equation (29) do satisfy conditions (130) and (131),
then this equation can always be transformed into a separable equation by introducing
both a new dependent variable defined by

and new independent variables £ and 7 defined by

£= o)
n = Yv)

where ¢ and Y are any convenient nonconstant functions (i.e., ¢' # 0 and $’¢ 0) and
u and v are determined from condition (131).

Direct Calculational Procedure for Testing ./,

In practice, it may not always be easy to tell simply by inspection whether the invar-
iant }H of a given equation can be put in the form (131). Also, there may be several
ways in which a given function /H can be expressed in the form (131). Each of these
ways will lead to a different '"coordinate system'' in which the equation is separable.

For these reasons, it is useful to give an alternative form of condition (131) which sup-
plies the means of testing the invariant /H by direct calculation and which, in addition,
gives a procedure for calculating all of the functions u and v which determine the new
independent variables.

To this end suppose first that /H satisfies condition (131). Then equation (127)
implies that the first equation (131) can be put in the form

‘u
— =&(u) + ¥(v) (132)
F'G’

There exist functions & and ¥ such that equation (132) holds if, and only if,
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2
0 <iH_> =0 (133)
du av \F'G!

But it follows from the middle two equations (131) that

2 _1lpy (_a_ +i>
o0 2 ou

ov
and
2.1 G'(T)(-a_ - i)
oT 2 du ov
Hence,

o .1 o, 1 3
ou F'(o) a0 G'(1) ot

2.1 2 1 3
ov. F'(o) 8o G'(1) ot

Using these in equation (133) shows that

bk i 1)
22222 2(2)

Upon introducing the function S of ¢ only and the function T of 7 only defined by

Hence,

(134)
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this equation becomes

2s(,,!H)mI + 3@(,%)0 +SU L 2T(4{)TT + 3T'(/H)T +T g (135)

This equation was first introduced by Darboux in a less general context (ref. 3).

Thus, if JH satisfies condition (131), then there exist strictly positive functions 8
of ¢ onlyand T of 7 only such that /H satisfies equation (135). Conversely, if there
are strictly positive functions S of ¢ and T of 7 such that jH satisfies equa-
tion (135), then it is an easy matter to reverse the steps carried out above to show that
equation (134) can be used to define nonconstant functions F and G and equation (133)
can be used to introduce functions & and ¥ such that /H satisfies condition (131).
Hence, we conclude that

(C9) There exist nonconstant functions F and G and functions & and ¥ such that
#,; satisfies condition (131) if, and only if, there exists a strictly positive function S of
o only and a strictly positive function T of 7 only suchthat fy satisfies equa-
Tion (135). o "

(C10) If strictly positive function S and T can be found such that equation (135)
holds, then the functions F and G for which condition (131) is satisfied can be calcu-

lated from equation (134).

Thus, if the functions S and T are known, conclusions (C8) and (C10) give a pro-
cedure for calculating a change in the independent variables which will transform equa-
tion (29) into a separable equation.

Now equation (135) always possesses at least one solution. (Note that equation (135)
is satisfied by taking S = T = 0.) We shall subsequently develop a procedure which will
yield expressions for all the solutions S and T to equation (135) provided that /H is
not one of two special types of functions. These expressions will involve, at most, two
undetermined constants. To determine what restrictions, if any, must be placed on these
constants in order that these expressions satisfy equation (133), they must be substi-
tuted back into that equation. If after this is done the constants can still be adjusted so
that S and T are positive functions, then we can conclude that equation (29) can be
transformed into a separable equation, and we can use the expressions for S and T to
calculate the new independent variables which will accomplish this.

Since this procedure will not work when ‘/H is one of two special types of functions,
before establishing this procedure we shall prove that, if /H is one of these types of
functions, the condition (131) is always satisfied and that the functions F and G can

easily be determined.
First, suppose that /H = 0. Then it is easy to see that condition (131) can always

be satisfied by taking
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d =¥ =0

and that any nonconstant functions F and G can be used for determining u and v.
Next assume that /H # 0. We may then define the function /H in terms of /H by

0
.i i ._1_ /H for /H #0 (lr
}H oo /H oT

il

Iu
Suppose there is a constant c o such that

fg=c¢ (137)

If ¢ =0 then

a1 Mm\_,
00 ‘/H oT

But this implies that /H has the form

/H = y(0)A(7)

for sone nonzero functions ¥ and X.
It is clear from equation (127) that condition (131) will always be satisfied if we take

$ =1

¥ =1
and

Ft=y

G'=2x

It c, # 0, definition (136) and equation (137) show that

a1 o

— =C
oo oT ) OJH

H
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But this is Liouville's equation. It is shown in reference 3 that the most general solu-
tion to this equation is

S = _2 Y (O)A'(7) (138)
% [rlo) - M(7)]?

" for all nonconstant functions ¥y and A. Now in view of equation (127), it is clear (if we
take y=F, A =G, and ¥(v) = —1/2cov2) that equation (138) satisfies condition (131).
There are many other ways of choosing the functions F and G such that equation (138)
can be written in the general form (131) and each of these choices, of course, leads to a
different change of variable (coordinate system) which will transform equation (29) into
a separable equation. To show this, notice that if  and A are bounded below we can
always choose these functions in such a way that they are both positive, for in this case
there exists a finite number M such that

M =| gtb-  {y(0), M)}
o, TED

where D is the domain of definition of the differential equation. If we put
r1=M+vy

then

Y4 (O (7)

Sq--2

% [ry00) - ay(r)?

and
'}’1 =0

A =0

A similar argument holds if both y and A are bounded above. Suppose that y and A
are either both bounded above or both bounded below. Then no generality will be lost if
we assume that y and A are both positive. Hence, if we define the nonconstant func-

tions F and G by
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F(o) = 2 1 at
Ve - gyt - gy
7(0)
> (139)
G(7) = 2 1 dt
‘/4t3 - gzt - g3
A7) .

for any suitable positive constants g9 and gg, then it is shown in reference 12 (p. 438)
that

o) = pE F(a)]

A(T) = éoE G(T):|

where §2 is the Weienstrass p-function (ref. 12). Substituting these equations into
equation (138) shows that

PR /- IO o

R

and the results of example 1 in reference 12 (p. 456) whos that this can be written as

22 [ 29 - 9739

0

It is now clear from equation (127) that /H satisfies condition (131) with & = §J/2¢ o and
¥ = -4/ 2c,. 'In addition, the functions F and G can be calculated from equation (139).
There is usually no difficulty in telling simply by inspection if a given function is a solu-
tion to Liouville's equation. Hence, we have shown that
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(C11) The condition (121) can always be satisfied if either the 1nvar1ant /H or the
function /H defined by equation (136) is equal to a constant.

Now suppose that fH # constant, /H # constant and that the functions S of ¢ only
and T of 7 only are any two simultaneous solutions of equation (135). Then dividing
equation (135) through by /H and applying the differential operator

to both sides of the resulting expression, we find (after some manipulation, which is car-
ried out in appendix A) that S and T must satisfy the equation

ak akz

2 —= S +5kyS'=2—T + 5k2T' (140)
oo oT
where we have put
k
12— o = Ji
(141)
4 0
ky =Sy — —u
Notice that equation (140) can also be written more compactly as
530 2 (% ) = AR (kg/ 57) (142)

5lo) aT

(If in any equation, functions which are negative are raised to fractional powers,
it will always be possible to eliminate the fractional exponents by carrying out the
indicated differentiations to obtain an equation in which all terms are real. There-
fore, no difficulty will be encountered when this more compact notation is used.)

Equation (140) can be used to obtain an equation which involves T only and not S
and an equation which involves S only and not T. Actually, this can be done in several
ways. We shall discuss one of these ways in detail and also indicate briefly how one of
the alternative methods can be carried out.

I k, were zero, definition (141) would imply (since by hypotheses / # 0) that
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only if T=0.

ag
H_,
oT

or equivalently, that there exists a function y of ¢ only (which by hypotheses is non-
constant) such that

j H™Y
Therefore, equation (141) would show that
4
ky =fu?'

Substituting this expression together with the condition ko = 0 into equation (140), how-
ever, yields (after some manipulation)

4
4 a}H (/H)o - _2Y"'S + 58!
JH oa /4 e

If S+0, then

8 YH_ s +bys
Sy o Y'S

Now the right side is a function of ¢ only; hence, this expression implies that

which is contrary to hypothesis. We therefore conclude that k= 0 implies S=0. A
similar argument shows that k; =0 implies T =0.

We have therefore established the following conclusion:

(C12) Whenever fH # constant and /.H # constant, (/H)T = 0 implies that equa-

tion (131) is satistied only if S =0, and (/H) = 0 implies that equation (131) is satisfied
g
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Since if S = 0 there is no need to calculate T and the reverse, we shall now make
the additional assumption that k1 #0 and k2 # 0. Since k; # 0, we can divide it into
both sides of equation (140). Differentiating the result with respect to 7 yields

ak ok Kk k

of L 1)\ g.-9of 1l 2} 7, 2_4_(1«:2) +i(k2) .52 _l_(kl) T +5_2n
k, a0 k, or K T k Tk, |k T k
1 . 1 . 1 1 1 %1 1

k K
- zl:i (k2>:' T +_2 )2 Kﬁj kg/ﬂ T+ 5_2T"  (143)
kq T, kg/5 o1 |\kq kg

If [l/k1 (kl) ] = 0, equation (143) is essentially a second-order ordinary differen-
Q.
.

tial equation for T. (Notice, however, that the coeificients in this equation are, in gen-
eral, functions of the two variables o and 7 and not just of 7 as is ordinarily the
case.) If [l/k1 (k1>} # 0, we can divide it into both sides of equation (143) to obtain
a
-

1 (x -2/5 3 |[¥2\, 2/5 )
2 k;%/% 0 | 2\ 2
k1 T 2 3 2
- 5 T \kq 5 \K1
S=___ Tmp.2 T + ™ (144)

S TN )

- -7 T

Equation (144) can now be substituted into equation (142) to obtain, in this case also, what
is essentially a second-order linear ordinary differential equation for T. In either case
then, it follows from equations (142) to (144) that if we define t(O), t(l), and t(z) by

_
2/5
k?/5_§_ o i(kz) _2 (kz) for K, #0
AT 5\ 2)r
) { (145)
1
—(k for K, =0
[kl( 2)7} !
L T
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¢

with

then

5,3/50

2

-

L
0 |K,

-k

.
(146)

ko
_“é for K1 #0
k

1

(147)

tO7 4ty 1@ _ g (148)

In view of the symmetry of equation (140), it is easy to see by interchanging ¢ and

7 that if we define s(o), s(l), and s

50 _

by
( y k2/5
3/5 o 2 1 2
k — L |—lk -2k for K, #0
2 oT K2 I;Z( 1)(;| 5(1)0 2
o
(149)

1

—(k for K, =0

E‘I(Z)T] i

-

_
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r 2/5
k k
5,3/5 0 1 2 1\,2/5
.2_k2 — ._<__> __>k1 -k1 for K2¢0

2 ag
(D - (150)
[/ 5]
s 1 3 _lk%/5 for Ky =0
2 kZ 5 oo k2
g 1 L _
g 2/5
k2/° [k
Sk3/P 212 [V for Ky#0
2 oT| K k
52 _ J i | (151)
Ky
—_ for K2 =0
" ko
with
1
K, = |+~ (k
2 g
then
s0g 1 sWgr  s@gu _ g (152)

There is another way in which equations of the form (148) and (152) can be derived.
This procedure will lead to equations whose coefficients t i) and s i) (i=0, 1, 2) are,
in general, different from those obtained above. To this end, equation (140) is differen-
tiated first with respect to ¢ and then with respect to 7 to obtain the following two
equations:

2(k1>00S + 7(1(1)08' + 5k, 8" = 2(1<2)GTT + 5(1{2)0'1" (153)

and

:z(k1 s+ 5Q<1)Ts' - 2(1(2)771* + 7(k2)TT’ + 5k, T (154)
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Since ky #0, ko # 0, and ‘/H # 0, in none of the equations (135), (140), (153), and
(154) can the coefficients of T and its derivatives and S and its derivatives all be equal
to zero. Hence, S, 8', and S'' can be eliminated among these equations. This proce-
dure will result in an equation for T which has the same form as equation (148). Sim-
ilarly, T, T', and T'* can be eliminated between equations (135), (140), (153), and (154)
to obtain an equation for S which has the form (152). This procedure has the advantage
over the preceding one that one less differentiation is required to calculate the coeffi-
cients of the equations. However, the algebra involved is more tedious.

We have now proven that if jH is not of the form covered by conclusions (C11) and
(C12), then all simultaneous solutions T and S of equation (135) must satisfy equa-
tions (148) and (152), respectively. We shall show how these equations can be used to
determine S and T provided that the coefficients of equation (148) and the coefficients
of equation (152) do not all vanish.

In appendix B, it is shown that the following four statements are equivalent:

(1) All the coefficients of equation (148) vanish.

(2) All the coefficients of equation (152) vanish.

(3) There exist functions Agy and Ag of T only, functions Y9 and Y3 of ¢ only,
and a constant Ty such that

5
3 1 1
K2 = -my PP o 207 (155)
@) | [750) - 2g(7)?
and
5 5
kg _— l}\z(T):l 5 A3(T)73(O) (156)

[79@)]° | [r5(0) - 2g(n)]?

kg
L= 7\2(7)’}/2(0')
k
1
> (157)
'}/5
5 1 2.2
K1 == _kl
Ty 7\3
2
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Combining equations (155) and (157) and putting
K=K, =K, (158)
shows that

A4(7)73(0)

[73(0) - 7&3(7)]2

(159)

Thus, K is a solution of Liouville's equation

(% KG>T = % K (160)

It is shown in appendix C that in this case equation (142) always possesses nonzero solu-
tions S and T which are given in terms of the functions appearing in equations (155)

and (156) by

SyL w
._3. :-E ’}/g +7)'3'}/3 +7T4 (161)
72 2
TAQA! _T2 )\2 Ao +7 (162)
Tihatg Ty Flgtg Ty

where To to my are arbitrary constants.
Suppose, therefore, that t(o), t(l), and t(z) are not all zero and, hence, that s(o),

s(l), and s 2 are not all zero. If the ratio of each pair of nonzero coefficients of equa-
tion (152) is a function ¢ only, then, after division by a suitable factor, equation (152)
becomes just an ordinary differential equation (its coefficients are functions of ¢ only)
which can always, in principle, be integrated to obtain an expression for S as a function
of o only. If this is not the case, then equation (152) can be divided through by a non-
zero coefficient to obtain an equation which has the same form as equation (152) but which
has the properties that one of its coefficients is equal to unity and at least one of its
remaining coefficients is not independent of 7. This equation can then be differentiated

with respect to 7 to obtain an equation of the form
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m n
éld__§+§2d_s.= ; m#n and m,n=0, 1or 2 (163)

do™ do™
and
§1#0 (164)
If Esz/él is a function of o only, then this equation can be solved to determine S as a
function of o only. (If m =0 and §2 = 0, equation (163) would then show that equation

(135) possesses only the solution S' =0.) But if éz/él depends on T, then this equa-
tion shows that ’

m n
d__g_—_g_ﬁzo; m#n and m, n=0, 1or 2 (165)
do™  do™

If in this case the smaller of the two integers m and n is zero, we conclude that equa-
tion (135) has only the solution S = 0.

We have therefore shown that, whenever /H is not of the form covered by conclu-
sions (C11) and (C12) or by equations (155) and (156), all the solutions S to equation (135)
can be determined to within at most two arbitrary constants by solving the appropriate
one of the three ordinary differential equations (152), (163), or (165).

Similar considerations, of course, apply to the function T and equation (148). Thus,
whenever /H is not covered by conclusions (C11) and (C12) or by equations (155) and
(156) all the solutions to equation (135) can be obtained by solving ordinary Eliffe—re—_—mtial
equations which are, at most, of second order.

This completes our discussion of the conditions for transforming equation (29) into a
separable equation.

EQUATIONS OF HYPERBOLIC TYPE (j = -1) - WEAKLY SEPARABLE
BUT NOT SEPARABLE

Functional Form of Invariants

Now suppose that equation (29) can be transformed into an equation which is weakly
separable but not separable by a change of independent variable of the form (55). Then
the functions ¢ and Y must satisfy conditions (71) to (73). Differentiating equation (71)
with respect to x shows that
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PxxPx = PxyPy =0 (166)
and differentiating equation (71) with respect to y shows that
Px¥xy = Py¥yy =0 (167)

Multiplying the first of these equations by Py s the second by (py and then adding
the results shows that

qﬁsﬂxx - qof‘,qoyy =0 (168)
or, using equation (71),
(qvi + qof,)(soxx - <pyy) =0 (169)
But equation (72) shows that
Oy * 0 and (py #0 (170)
We therefore conclude that
Pyx = Pyy =0 (171)
Definition (54) and equation (74) now show that
aQ, +bgoy =0 (172)

Equation (72) shows that d1 # 0. We can therefore define a nonconstant function U of £

only by

J) = /.L ds (173)
a,(8)

Thus, there exists a function u of x and y such that

u(x, y) = Telx,y)| = (e (174)
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Hence,
u, =Ue, == ¢
X X X

and

Using these results in equations (71) and (72) shows that

2 2
uy - ug = 0 (175)
and
f=wp, - ugy #0 (176)

Substituting equation (176) into equation (73) and then adding —e%/ 4 times equation (175)
shows that

or, upon collecting terms,

2 2
<¢-el >-<¢-elu>—o (177)
x5 & vy 3y~

Differentiating this equation with respect to x gives

ey ey e e ei ~
o 2, 2 o )

and differentiating with respect to y shows that
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eq e e'l ey ey
(‘Vx'?“x>@xy"2—"xy’?‘l’y‘&>' (‘py’?uy><‘/’y'?uy> =0
y

Multiplying the first of these by [xpx - (e 115{/ 2)] and the second by ["{"y - (e 1uy/ 2)] and
-then adding the results shows that

2 2
€1 €1 €1 1
(‘”x‘?“x) (‘”‘5) ' (‘”v‘?“y) @y'?“y)
b.4 y

e (g - o) (- S u Vown, - u) L=
y 5 Wy \Px T xRy T WYy T

Upon using equation (177) this becomes

2 2 '
Iy =22 (g - ) (v - woe) - 2 tugy - uy ) - 2 (- wou)
5 [(\"x 75 x y 5 xx " Vyy T Vxx Ty Ty xx T Yy

ey €4 e’1
+ (‘py - —5 u)> (‘l/x - ‘—2— UX> —2— (‘I/Xuy - LBﬁlfy) =0

Hence, upon using equation (175) and adding and subtracting (e 1/ 2)u, and (e 1/ 2)uy we
find

2 2 '
1 w-e_l_u +;p__e_1u V.o -y _ﬂ(xpu-¢u)+
2|\'* 2 % y 9 ¥ xx " Tyy 9 XX Tyy
, ey 1\’ € €l €1 ey e}
W) W) ey W\t T

Since equation ('72) would be violated if both
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and

Yy 5 %y "
we conclude that
Yax = Yyy ~ €1yt - Yyu ) = 0 (178)

Definition (54) shows that, when equations (176) and (178) are substituted into equation
(75), we obtain

(dg +eg - e (g, - d/yuy) = ay, +ba,l/y (179)
Equation (172) and definition (174) show that

au, +buy =0 (180)

Multiplying equation (179) first by u, and then by uy shows, after using equation (180),
that

(dg +eg - eu, Wruy - Wyuo) =bluvy - Yu) (181)

and
(dg +ey - epu (Yyuy - Youy) = aYu, - You,) (182)
It follows from equation (175) that
Uy Wyt - wpur) = ug(Ppug - Pouy)
and
u, (Wi - Youo) = u (Ypug - Youy)
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and equation (176) implies that
wxuy - zpyux #0
Substituting these results into equation (181) and (182) shows that

b= -uy(e2 - e} +d2) (183)

as= ux(e2 -ejy+ dz) (184)
Finally, substituting equation (176) into equation (76) shows that

¢ = (W - Uy deg (185)

Equations (183) to (185) with u and y determined from equations (175) and (177),
respectively, now give the most general forms that the coefficients of equation (29) can
have if this equation is to be transformable into an equation which is weakly separable
but not separable by a change of variable of the type (55). As before, we shall use these
relations to obtain expressions for the canonical invariants. To this end, we differenti-
ate equations (183) and (184) with respect to x and y to obtain

ay = Uy (dy +eg - ef) +uy(ey - €)' +“§d’zd1
a = uxy(d2 +eg - €e]) +uX1//y(e2 - e'l)’ +uxuyd'2d1
b, = —uxy(d2 +eg - e'l) - uyglxx(ez - e’l)' - uyuxdgzd1
by = -ug (g +eq - €]) - wle, - €)' - ugd'zdl
Hence,
ay +by = (uxz,[/y - uyg!zx)(e2 - e'l)'

and since the same derivation which was used to derive equation (171) from equation (71)
suffices to show that equation (175) implies
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we see from equation (175) that
a, +by = (u, ¥, - uyx,by)(e2 - e'l)'
Finally, equations (175), (183), and (184) show that

a -b2=0

Using these results together with equation (185) in definitions (38) and (39) shows that

Ay = (a¥y - u¥)(ey - ey)’ (186)
/H = (uxth - uy’aby)lie?, - -% (ez - e'1)i| (187)

Upon multiplying equation (177) through by (ux)2 and using equation (175) we find

2 2
uzzp —_e_lu -uzzp -iu =0
xX\"x 9 X y\'y o ¥

Hence, upon factoring and using equation (175) again

_ €1 ey \|
0= tx(wx - > ux> + uy(tpy - > uy) (uxz,bx - uyz;/y)

:_w-fl +u1[/_3u—
[’xxzux y\“y 3y

Therefore, equation (176) shows that

eq ey
uxsz—_z-ux +uy z//y-_zuy =0 (188)

ot

=

Let e 4 be any convenient nonzero function of 7 and define the nonzero function e’ of

n by
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ey for ey +0
ey for ey = 0

It is also convenient to define two new functions e and g of 1 only by

eg = e"'(e2 - e'l)'

e6 = e+[e3 - % (ez - e'l)]

Then since e’ # 0, equations (186) and (187) become

e

$y = g - ugdy) 2 (190)
e+
e

Au = Wy - ugy) —E (191)
e

And again since et 2 0, we can define a nonconstant function v of 7 only by

v(n) = 2 / 1 an
e (n)

This shows that there are functions v and w of x and y such that

v(x,y) = V[px,y)] = V() (192)

v(x,y) - ux,y) for e; #0
w(x,y) = (193)
v(x,y) for e; =0

Then
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y y
e
And definitions (189) and (193) show that
+ e
e _ 1
2T
+ e
€ w_ -y, -4
TR

Substituting these results into equations (188), (190), and (191) shows, after using equa-
tion (175) and the fact that e™ # 0, that

U Wy +U W = 0 (195)
S =§ (W, - Uy, )eg (196)
S =% (w w, - uywy)e6 (197)

Equations (175) and (195) now show that either

= d = -
Ux uy an Wx Wy

or

u, = -uy and Wy =Wy

Hence, if we put

OC=X+Yy
(198)
TEX-Y

then we conclude that there exists a nonconstant function F of ¢ only and a nonconstant
function G of 7 only such that
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u(x, Y) = F(O’) and W(X7Y) = G(T)
or (199)
u(x,y) = G(1) and w(x,y) = F(0)

Upon substituting these results into equations (196) and (197) we find that

JH = -F'G'es\ A
> for u=F and w=G
Sy = F'G'eg |
e (200)
JH = F'G'e5 B
for u=G and w=F
Sy = F'Geg J

Now equation (192) can be solved for 7 as a function of v to obtain
1 = Yv) (201)
and equation (174) can be solved for ¢ as a function of u to obtain
£ =) (202)
We can therefore define functions & and ¥ of v only by

—e5(77) = -95[5(V)] for u=F and w= E}
&(v) =
es(n) = es[ﬁ(v):l for u=G and w="F
for u=F and w=G
T(v) = egln) = eg[P(v)]

for u=G and w=G

Substituting these into equation (200) shows that
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Sy =2(VF'G

(203)
Sy =¥ (WF'G

Equations (193) and (199) show that v must be given by one of the three following
equations:

v = F(0) + G(7) (204a)
v = F(o) (204b)
v = G(7) (204c)
and that
u=F or u=G h (205a)
when equation (204a) holds,
u=G (205b)
when equation (204b) holds, and
u=F (204c)

when equation (204c) holds. The new independent variables are then given by equations
(201) and (202).

Thus, equation (29) can be transformed into an equation which is weakly separable
but not separable (by changing the independent variables) only if there are functions &
and ¥ of v such that the canonical invariants satisfy equations (203). Now the same
argument that was used in the separable case suffices to show that if equation (29) can be
transformed into an equation which is weakly separable but not separable by changing
both its dependent and independent variables then it is necessary that its canonical invar-
iants satisfy conditions (203).

In order to see that these conditions are also sufficient suppose that there exist func-
tions & and ¥ such that conditions (203) hold with v given either by equation (204a)
or (204b). Then it is easy to verify by direct calculation that
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.a_[z 4G'(T) f@(v) d\{l:%[—% iG'(T) f«I)(V) dv}

oy
Hence, there exists a function w(l) such that
(1)
- G' d
2oon fama |
for v=F +G and v=F (206)

wgl) = —-Z- +i G'(7) f &(v) dv

On the other hand, if conditions (203) hold with v given either by equation (204a) or
(204c), then it can again be verified by direct calculation that

:y[z ey [ oW dv]—g[-5+ F@) [ 3 dv]

Hence, there exists a function w(z) such that

F'(o) /@(v) dv

w§,2) - -l’;. +i () /&) dv

2) a1
w = - —_
¥ 2 4

for v=F +G and v=0G (207)

It now follows from equations (32) to (35) that in this case the change in variable

X6
V=e U (208)
transforms equation (29) into the equation
1 1 _
Vx - Vyy +3 © [ S a) dv:|(Vx + V) + (/H . JH>V -0 (2092)

when v=F +G and when v = F and that the change in variable

transforms equation (29) into the equation
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Vex - Vyy - .;_ F [f & (v) dv](Vx - V) + (/H - % JH>V =0 (209b)

when v=F +G and when v = G. Hence, upon substituting equations (203) we obtain

- _l ' 100 1 —
Vix = Vgy +3 G [fii»(v) dv](Vx+Vy)+FG(\II +E<I>)V_0 (210a)
for v=F +G and v=F, and
V.. -v._-1m /@()d v.-v)+Fcfr-lalv=0 (210b)
xx " Vyy Ty V) av|(Vy - Vy) + o)t T

for v=F +G and v = G. Upon introducing the new independent variables v=F +G
and u =G we find that

Vi + Vy = ZF'VV

Vex - Vyy = 4F'(}'Vuv +4F'G'V_

and upon introducing the new independent variables v=F and u =G we find that

Vx + Vy = 2F'VV

Vix - Vyy = 4F'G'Vuv

Substituting these results into equation (210a) shows that

Vo, * Yoy +%V¢(v) dv]Vv +%[xf(v) +_;-<I>(v)]V -0 for v=F +G and u=G (211a)

V., +i [/q;(v) d"}vv %E;:m +%<I>(v)]v= 0 for v=F and u=G. (211b)

Upon introducing the new independent variables v=F +G and u=F we find that
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Vi - Vy = ZG'VV

Vex - Vyy = 4F'G'Vuv + 4F'G'VVV

and upon introducing the new independent variables v=G and u =F we find that

Vg - Vy = 2G'VV

Vix - Vyy = 4F'G'VuV

Substituting these results into equation (210b) shows that

1 1 1
Vuv +VVV -Z[f@(v) dv}VV +Z|EIf(v) _EQ(V)JV:O for v=F +G and u=F (21lc)

and

Vo - [f@(v) dv]VV +ﬂ11(v) —%@(v)]V:O for v=G and u=F (211d)

It is clear that equations (211a) to (211d) are weakly separable but not separable. It is
not hard to show that if, instead of taking u and v as the new independent variables,
we had chosen any nonconstant functions of u and v as the new independent variables,
we would have again transformed equation (29) into an equation which is weakly separ-
able but not separable.

We have therefore established the following conclusions:

(C13) The canonical hyperbolic differential equation (29) can be transformed into an
equation which is weakly separable but not separable by changing both the dependent and
independent variables if and only if there exist functions & and ¥ and nonconstant func-
tions F and G such that the canonical invariants S and /H satisfy the following

conditions:
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S = d(VF(0)G(7) )

H
S = F(MF(0)6'(7)
where
v = F(0) + G(7)
> > (212)
v = F(0)
or
v = G(7)
and
C=x+y, T=%x-Y)

(C14) I the canonical invariants of equation (29) do satisfy condition (212), then this
equation can always be transformed into' an equation which is weakly separable but not
separable by introducing both the dependent variable V defined either by

V=e U (213a)

U (213b)

when v=F +G or v +G, where w(l) and w(z) are determined to within an unimpor-
tant constant by equations (206) and (207), respectively, and also the new independent
variables £ and n defined by

£=9()

n = YW
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where @ and_gb' are any convenient nonconstant functions, v is given in equation (212),
u=F when the transformation (213a) is used and u = G When the transformation (213b)

is used.

Direct Calculational Procedure for Testing Invariants

We shall now give an alternate form of condition (212) which can be used to test the

invariants Sy and Ay by direct calculation.
To this end notice that "‘H and /H satisfy condition (212) if, and only if, there
exists a function F of ¢ only and a function G of 7 only such that

S S,
Fe')_ T\FGr),
/H ) /H o

F'G' F'G' ),

It is now an easy matter to establish the following conclusions:

(C15) There exist nonconstant functions F and G and functions & and ¥ such
that /H and Sy satisfy condition (212) if, and only if, there exists a nonzero functlon
T of 7 only and/or a nonzero functlon S of 0 only such tk that t either

and } (214a)

9 (sg) =29
) A |
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_a_ S = O‘W
a0 ® H)
and > (214b)
0
—_ =0
2 54y
or
0 _0)
— (Tsf;) =0
oT (T H)
and ¢ (214c)
S (Tg) =0
oT H

-/

(C16) If nonzero functions S and T can be found such that equation (214a) is satis-
fied, then condition (212) h_p_lds with v = F + G, and the functions F and G are given by

F' = (215a)

|~

and

G' = (215b)

1
T
If a nonzero function S can be found such that equation (214b) is satisfied, then condition
(212) holds with v = G, and the function F is given by equation (215a). K a nonzero func-
tion T can be found such that equation (214c) is satisfied, then condition (212) holds with
v = F, and the function G is given by equation (215b). )

It is clear that, if ‘/H #0 and /H # 0, then equation (214b) holds if, and only if,

r), (),

= = Function of ¢ only
Yu “H




Similar remarks apply to equation (214c). Hence, there is no difficulty in determin-
ing whether conditions (214b) and (214c) are satisfied. Determining whether /H and
"H satisfy condition (214a) is slightly more difficult. If JH were zZero, then it would
be possible to transform equation (29) into a separable equation whenever it is possible
to transform it into a weakly separable equation (compare condition (212) with conditions
(130) and (131) and eq. (127)). Since this case has already been discussed, we shall

exclude it here and suppose that Sf.. 20, If |(f. S, were zZero, then there would
H H),/”"H ’
-

be a function y of ¢ only and a function A of 7 only such that

JH = V(O)K(T)

This would imply that either

T
-1
A
or
i
s=_2

where 7, and Tg are constants and that jH satisfies all three of the conditions (214a)
to (214c). In this case then, it is only necessary to determine whether /H satisfies any
one of the following conditions in order to establish that condition (212) holds:

/H=O

W2l ) - 224
i(ﬁ) =0
o0 \ ¥
i(é) =0
oT \ A

Hence, suppose now that equation (214a) has a nonzero solution and that . g#0 and
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[/\JH) /JH] # 0. We can therefore divide the first equation (214a) through by "‘H and
(%)

obtain

("a), n),

S Y +8'=T + T
H JH
Upon applying the operator
A
2 |,
o0 oT "H i}
to both sides of this equation we obtain
S(¢ =T|(¢ (216)
(a), =T (n),
where
- =1 o1 (jH) (217)
SH oT JH fo)

Now by hypotheses ‘.H # 0. If there were a nonzero constant C, such that

then "H would satisfy Liouville's equation and would therefore have to have the form of
equation (138). Now it is clear (if we take Y =F, A = -G, and &(v) = 1/2c v ) that equa-

tion (138) satisfies condition (212). Hence, assume that tH # constant. Thus ("H
o

and (tH) do not both vanish. If one of them vanished, say (‘H) for definiteness, then
T o

equation (216) would show that T = 0; that is, that the first equation (214a) does not have
a nonzero solution, which is contrary to hypothesis. We therefore conclude that
(‘.H) #0 and (’H) # 0. Equation (216) now shows (upon differentiation) that

o T
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T (JH)T d ("H>o _9(2) (218)

and

(‘.H)o B (iH)r _ oD (219)

(JH)T 30 (‘.H)o

These equations show that if equation (214a) has a nonzero solution, then Q(l) must
be a function of ¢ only and Q 2 must be a function of 7 only. Conversely, if these
conditions are satisfied, equations (218) and (219) can be integrated to obtain

St_
S

fﬂ(l) do
S = Ty e (220)

and

S 2@ ar
T=17qe (221)

where 7, and 7o are constants, and these results can be substituted back into the two
equations (214a) in order to determine whether they possess a nonzero solution.
This completes the discussion of the hyperbolic equation (29). We shall now con-

sider the parabolic equation (30).

EQUATIONS OF THE PARABOLIC TYPE (j = 0)
Functional Form of Invariants
First, suppose that equation (30) can be transformed into a separable equation by a
change of variable of the form (55). Then, the functions ¢ and y must satisfy conditions
(62) to (67) with j =0, d; # 0, and ey = 0. In addition, we have already indicated that
we shall require that b # 0 in order to avoid trivialities. Equation (64) now becomes

Y =0 (222)
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(Incidently, this shows that equation (63) is automatically satisfied.) Equation (62) shows

that

_ 2
fdl—cpx¢0

It follows from definition (54) and the fact that d1 # 0 that substituting the two preceding

equations into equation (66) yields

e
2 2
by, =2 ¢
y X
dy
Since by hypotheses
e, ¥) £0
a(x,y)
it follows from equation (222) that
#0
lpy
Hence, equation (223) shows that
€y #0

Equation (222) shows that ¢ is a function of y only and since

aez

_=e'1// =0
x 2¥x

(223)

(224)

(225)

we can conclude that €9 is a function of y only. It now follows that there exists a non-

zero function v of y only such that

Hence, equation (223) becomes
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<l

Lo2z0 (226)
dy

It can again be concluded from definition (54) and the fact that d1 # 0 that substitu-
ting equation (223) into equations (65) and (67) yields

9y o
Pyx +3P5 +bgoy == P (227)

and

1 2
c= (d3 + e3) ™ Py (228)
1

Upon substituting equation (226) into equation (228) we obtain
d; +e
c_2 3 (229)
b v

Since equation (226) shows that @, * 0, we can divide equation (227) through by @y to

d @
1 2
a"‘—QDXX:——Q”x—b(—X)

Yx dl

obtain

Equation (226) can be differentiated to obtain

b dr

1
X.g 1y, __1¢X (230)
b Px d1

Upon eliminating ‘Pxx/ Py between these two equations we obtain

b @
a+.1_X=__._2_(pX_b_X (231)
2 b dq Py

Equations (226), (229), and (231), in which dy, dy, dg, eg, and v can be any function of
their arguments, now give the most general form that the coefficients of equation (30) can
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have if this equation is to be transformable into a separable equation by a change of vari-
able of the type (55). However, it is again more suitable to use these expressions to
obtain conditions for the canonical invariants. Since equation (45) shows that "P = b,

we see from equation (226) that this is already partially accomplished. An expression
for /P can be obtained by substituting equations (226), (229), and (231) into definition
(46). After considerable algebraic manipulation, which is carried out in appendix D, we
obtain

2

S =E R(ga)] - §<ﬁ> + b(fl) (232)
vx) | ?)),

where the function R of ¢ is defined in appendix D. Definition (45) and equation (226)
show that

=b =2 %0 (233)
d X

This shows then that equation (30) can be transformed (by changing the independent vari-
ables) into a separable equation only if there is a function ¢ of x and y, functions d1
and R of ¢ only, and a function v of y only such that the canonical invariants satisfy
conditions (232) and (233). The argument used for the hyperbolic case now suffices to
show that if equation (30) can be transformed into a separable equation by changing both
its dependent and independent variables then it is necessary that its canonical invariants
satisfy conditions (232) and (233).

In order to see that these conditions are also sufficient suppose that there exist func-
tions ¢, R, d;, and v such that equations (232) and (233) are satisfied, and define the
function 6 by

6 = fadx (234)

Then,

and definition (46) shows that
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p)
b b b
jP=_a-120—132-_x -la +[-X - o + %
ox \b 2 2b 2b/|. Y b

Thus, if we put

b b
=1 zc_l a2 o (X -la +X 6. +Y (235)
b 2 2b 2b)|, Y b
then definition (46) can be written as
S =K
ox
Using this result in equation (232) gives
14 @
e -Lr) +2 <_51> A <_Y>
ox v 2 Py ay Py
This shows that there exists a function « such that
@
w, =bf¥ (236)
Px
® 2
wy =9 - 1R(p) +2 (_y) (237)
v 2 Py
On substituting equation (236) into equation (237) we obtain
2
“x 1
Q-w,_ +—===R(p) (238)
Y o v

The results of appendix E show that equation (233) implies
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V'

RSN (239)
2

It is shown in appendix F that equations (234), (235), (238), and (239) taken together
with equations (40) to (43) imply that the change of variable

V= e(1/2)[(.0 + (1/2)1n|b| + 9]U (240)
transforms equation (30) into the equation

V.., - |w +l?§-V +bv, + 2 R(qo)+-1v'V=0 (241)

Upon introducing the new independent variables
£=oX,y)
n=y
we obtain

QDXV£§+ QDXX +b§0y‘(px Wy +§ —b— Vg‘l‘ VT] +-2—V R(‘E) +§V(77)V=0

Hence, upon using equation (230) (which follows from differentiating eq. (233)) and equa-
tion (236) we find

!

2
PxVeg ‘“2‘(;1‘

2 b 1, -
90ng +an +§ |:R(£) +§ v (n)}V =0

Finally, upon using equation (226) we obtain
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4BV +2 OV + v, +1 [R(&) +2 V'(n)]V -0

and this equation is certainly separable.

It is easy to see that equation (241) could also have been transformed into a separable
equation if n# was taken to be any nonconstant function of y.
We have therefore established the following conclusions:
(C17) The canonical parabolic differential equation (30) can be transformed into a

separable equation by changing both the dependent and independent variables if and only
if, there exist a nonconstant function ¢, a nonzero function d1 of ¢ only, a function
R of ¢ only, and a nonzero function v or y only such that the canonical invariants

sp and /P satisfy the following conditions:

JP=1¢}2<¢0
dy

2

Jp = B R(QO)L - 1;— CZ—Z)

X

£

(242)

(C18) I the canonical invariants of equation (30) satisfy condition (242), then this
equation can always be transformed into a separable equation by introducing both a new

dependent variable V defined bir

(1/2)[w +(1/2)In|b| +6]
e U

where w is determined to within an unimportant constant by equations (236) and (237)
and 6 is defined by equation (234), and new independent variables & and 7 defined by

g = QD(X, Y)

n = Yy)

where ¢ is determined from condition (242) and ¥ is any nonconstant function of y

only.
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Direct Calculational Procedure for Testing fp
We shall now give an alternate form of condition (242) which can be used to test the

canonical invarjants ., and fp. To this end notice that (since ¢, # 0) the second
equation (242) can be written in the form

2
@ @
Yt (Y] - () =R
Py 2 \@y Z
X Y,

But there exists a function R of ¢ only such that this equation holds if and only if,
2 2
@ @ @ o
o | L g +[R(ZZY]| - [p(2 o (Ll (2N -0 (2 =0
(’OX "DX (’DX qDX qDX qDX
X Y J)/x X y y.

Hence, upon differentiating by parts we can conclude that there exists a function R of
¢ only such that the second equation (242) holds if and only if,

2 2
@ @ @ @ @

2 vis R[] - (=2 =2 [vigp +2(= _b(_Y -y (243)
3y 2 \@y . Py . ox 2 \¢x . Py . Px

On the other hand, it is shown in appendix E that there exists a function d1 of ¢ only
such that the first equation (242) holds if and only if,

p(fy) -1 % |y (2y =lv(2> (244)
0% 2 b % 2 \v
X

X

Upon putting

4
TEV_X
¢X

in equations (243) and (244) we obtain
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L2, w0 e 2 @)1 e

and

b 2
T ¢+l Xp_1¥ (E) (246)
2 b 2

Since given T/v (recall that v # 0) the first-order linear differential equation

=¢ (247)

Py y

< |13

always has a nonconstant solution (i.e., a solution ¢ such that @y and goy are not
both zero) and since equation (247) shows that ¢, =0 and implies that Py = 0, we can
conclude that equation (247) always has a solution ¢ such that Py * 0. This remark
taken together with the preceding results is sufficient to show that there exist functions
¢, dy, R, and v # 0 such that condition (242) is satisfied if, and only if, there exists a
function T and a nonzero function v of y only such that equations (245) and (246) are

satisfied.
Multiplying equation (246) by (bT/v) shows that
bT?\ 1. /b
bT™) _ 14y (_> (248)
2v X 2 v y
Hence,
2 2
T(by?) (1) “T(B) -(21) 1- (9:.9)
2
v \2v x v y 2 \v v v v v y

Using this result in equation (245) shows that

2 o) o (27) |-,

X

and, by using equation (248) again to eliminate (sz/ V)X, we obtain upon differentiating

by parts
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(), - 07y, = (140) (10

The steps of this argument can easily be reversed to show that equation (249) taken
together with equation (246) is equivalent to equation (245) taken together with equation
(246). We have therefore established the following conclusions:

(C19) There exists a function @ and a nonzero function d; of ¢ only, a function
R of ¢ only, ‘and a nonzero function v of y only such that JP and f P sat1sfy con-
d1t1ons (242) if, and only if, there exist a function T and a nonzero function v of y
only such that B

(v/P)y - (bTy)y = (T /P)x (249)
TX+_]: E),(.Tz_l_v_b_y_lv' (250)
2 b 2 b 2

(C20) If a function T and a nonzero function v of y only can be found such that
equations (249) and (250) hold, then a function ¢ which satisfies condition (242) can be
found by solving the first-order linear partial differential equation (247). Thus, ¢ is
any function such that ¢ = Constant is an integral of the ordinary differential equation

dx T

dy v

Notice that equations (249) and (250) are linear and homogeneous in T and v.
Hence, they always possess the trivial solution T =v = 0. However, conclusion (C19)
requires that the function v of y only be nonzero. We shall now develop a procedure
which will yield expressions for all the solutions T and v to equations (249) and (250).
As in the hyperbolic case, these expressions will involve undetermined constants. When-
ever these expressions are obtained by this procedure, it is necessary to substitute them
back into equations (249) and (250) to determine what restrictions, if any, must be placed
on the undetermined constants in order that these equations be satisfied. If after this is
done the constants can still be adjusted so that v # 0, then we can conclude that equa-
tion (30) can be transformed into a separable equation, and we can use the expressions
for T and v to calculate the new coordinates from equation (251).

Now suppose that the function T and the function v of y only are any two simul-
taneous solutions to equations (249) and (250). Then it is shown in appendix G that when
the operator
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bX

. 1=
b

5.4

DO =

is applied to equation (250) the following equation is obtained:
. tr1 R
2v'/o +V(f +X_= T (251)
P (/P)y 2 (/P)x

where

2
b b b
;=1 X y y
=2 |(f __/}-_Y_.J,(_) (252)
P75 [( P)x 2b/"P] 20 \2b
Now if (/P) = 0, equation (251) is a third-order ordinary differential equation for
x

v since this condition also implies that all the coefficients in this equation are functions
of y only. On the other hand, if (/P) # 0, it can be divided into both sides of equa-
X

tion (251) to obtain

(/'P)y /o g 1

v @; +2v' (fP)X + (/P)X

Equation (253) can be substituted into equation (250) to obtain, in this case also, what is
essentially a third-order ordinary differential equation for v. (Notice, however, that
the coefficients in this equation will be, in general, functions of the two variables x and
y and not just of y.) In either case then, it follows from equations (250), (251), and
(253) that if we define Y\, Y1) and v by

=T (253)

e (/- )y for (/'P)X =0

v{0) _ ( /-P> b (254)
Tvlg% L
k X
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( 2 /‘P for (/P>x =0
(1)
Y = 5 (255)
_1— 9 \/— _/P_ +-1- for (f #0
b ox (jp)x 2 ( P)
L
g = for (/P> 0
v(3) = ) . . . (256)
0 b
W -& 2(/1) for (/P) #0
L
then
YOy yDyr  yByri g (257)

We have now proved that every function v of y only which satisfies equations (249) and
(250) for any function T must satisfy equation (257). The coefficients of this equation
cannot all be zero. For if (/P) = 0, this conclusion follows directly from equation (256);

and, if (/P) # 0, it is easy to see from equations (255) and (256) that Y(3) =0 implies

that Y(l) = b/ 2. Equation (257) can therefore be used to determine v in exactly the
same way that equation (148) was used to determine T in the hyperbolic case.

Thus, if the ratio of each pair of nonzero coefficients of equation (257) is a function
of y only, then after division by a suitable factor equation (152) becomes just an ordin-
ary differential equation (with coefficients now functions of y only) which can always be
integrated to obtain an expression for v as a function of y only. On the other hand, if
this is not the case, then equation (257) can be divided through by a nonzero coefficient to
obtain an equation which has the same form as equation (257) but which has the properties
that one of its coefficients is equal to unity and at least one of its remaining coefficients
is not independent of x. This equation can then be differentiated with respect to x to
obtain an equation of the form

"~ m f d
Yld._ +Y2M_ m#n and m,n=0, 1or 3 (258)

dym dyn

and
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I ?2/§1 is a function of y only, then this equation can be solved to determine v as a
function y only. But if ?2/?1 depends on x, then equation (258) shows that

m#n and m,n=0, lor 3 (259)

We have therefore shown that all the functions v of y which satisfy equations (249)
and (250) can be determined to within at most three arbitrary constants by solving the
appropriate one of the three ordinary differential equations (257) to (259).

If (/P)x = 0, equation (257) is just an ordinary differential equation (its coefficients

are functions of y only). And, therefore, there are three linearly independent functions
v of y only which satisfy this equation, and any linear combination of these solutions is
also a solution. Now it is shown in appendix H that, for each of these infinitely many
nonzero functions v of y only which satisfy equation (257), there exists a function T
which contains two arbitrary constants, such that v and T satisfy equations (249) and
(250). Thus, if </P)x = 0, there is a six-parameter family of solutions to equations

(249) and (250). The analysis of appendix H shows that, in general, it may be necessary
to use different expressions for T in different parts of the domain of equations (249)
and (250). Since the analysis of appendix H is constructive, it can be used to determine
T once the solutions v of equation (257) are found. As has already been shown, once
T and v are determined the six-parameter family of independent variables which trans-
form equation (30) into a separable can be found.

If </P)x # 0, then once v is found by the procedure just described the function T

can be determined from equation (253). It clear from the way that equation (257) was
derived that, if v satisfies this equation, then T and v will automatically satisfy equa-
tion (250). However, it is necessary to substitute these expressions for T and v back
into equation (249) to determine what restrictions must be placed on the arbitrary con-
stants which they contain in order that both equations (249) and (250) are simultaneously

satisfied.
Since a parabolic equation cannot be transformed into an equation which is weakly

separable but not separable, this compleses the discussion of the parabolic equation (30).
We shall now consider the elliptic equation (31).
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EQUATIONS OF THE ELLIPTIC TYPE (j = 1)

Functional Form of Invariants

First, suppose that equation (31) can be transformed into a separable equation by a
change of variable of the form (55). Then, the functions ¢ and i must satisfy condi-
tions (62) to (67) with j =1, d1 >0, and e > 0. It is therefore permissible to intro-
duce the functions

vd;

and

1

Ve

and to define a function u of £ only and a function v of 1 only by

(260)

~ 1
£) = ————d&
R / V(&)

(261)

v(n) = / L
Ve1(m)
Thus, there are functions ut and v of x and y such that
ut(x,y) = Ufpx,y)] =u)
v(x,y) = V[yx,y)] = v(n)
We shall suppose that these equations can always be solved for ¢ and i to obtain
£ = 9(x,y) = 3[u'kx,y) (262)

and

n = lx,y) = P[v(x,y)] (263)
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Therefore, it follows from equations (260) and (261) that

% _ Va au®
ox 1 oxX

+
%0 _ N ou”
ay oy

oY _ A ov
Vol
X ox
oy - ov
— ey —
ay 1 ay
Hence,
2
2 2 + +
Kt N s +_1_d'1<_a.u_>
ax2 ax2 2 ox
2
2 2 + +
99 _ Jd_l du’ 1 day _8&_)
ayz ayz 2 oy
2 2 2
ci N ol A N} ﬂ)
aXZ axz 2 ox

It now follows from definition (51) and equations (264) to (271) that

=

2 2
L(l)((p) =51 dy (_8_1£> ¥ <_a£_-> + ‘/ol_1 L(l)(ui)

0X oy

2 2]
LBy =Ley (2‘1) +<ﬂ> + yor L)

2 ox oy
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(265)

(266)

(267)

(268)

(269)

(270)

(271)

(272)

(273)



Upon substituting equations (267) to (269), (272), and (273) into conditions (62) to (67)
with j =1 we obtain

= (u;)z + (u;)z (274)
0= u;vx + u;'vy (275)
f= (Vx>2 + (Vy>2 (276)

fdy = 1 d' [(x) +(u )] va; LDwh 277)

fe, =-21 e} [VX>2 + (Vy>2} + ﬁ L(l)(v) (278)
f(d3 + e3) =c (279)

After substituting equation (274) into equations (277) and (279) and equation (276) into
equation (278), we obtain

L0 - 0, ) + 3] (250
L(l)(v) = ey I:(vx>2 + (Vy>2:1 (281)
c = (d3 + e3)|:<u;>2 + (u;;ﬂ (282)

where the function d4 of & only and the function ey of 1 only are defined by
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Equations (274) and (276) show that

2
(u;> . (u;> ) (Vx)z N (Vy>2 (283)
or multiplying both sides by (VY>2

2 2

(Vy>2(“;> * <vy>2(u; ) = (Vy>2 [(VX>2 * (V.V)z}

Eliminating v_u? between this equation and equation (275) yields

(6 [l + (] = (2l + ()]

and, since (Vx>2 + (vy)z =f # 0, this shows that

Hence,

u;' = £V, (284)

=FV (285)

where the minus sign in equation (285) must be associated with the plus sign in equa-
tion (284), and the plus sign in equation (285) must be associated with the minus sign
in equation (284). Thus, it is convenient to introduce a new function u of x and y by

ut if the plus sign holds in equation (284) and

the minus sign holds in equation (285)
u= (286)

-ut if the minus sign holds in equation (284) and

the plus sign holds in equation (285)

Equations (284) and (285) now become
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Equations (284) and (285) now become

X y
(287)
ug = -y

Equations (262) and (263) and definition (286) now show that we can define functions
Py and py of u only and functions a4 and Qg of v only such that

d3[?p'(u)] if u=u*
py(u) =

d3E{p‘(-u)] if u=-ut

d4[q'5(u)] if u=u*

pz(u) =
—d4['<;(—u):| if u=-u*

a;(v) = eg[¥(v)]
a9 (v) = e,[TV)|

Substituting these definitions together with definition (286) into equations (280) to (282)
gives

L(l)(u) = pz(u) ui + u?) (288)
L(l)(v) = qz(v)<v}2{ + v?)) (289)
c = [pl(u) + ql(v)] <u§ +u§2,) (290)

Now equations (287) are just the Cauchy-Riemann equations. Thus, u and v are
conjugate harmonic functions. Therefore,

V2 = V2 = 0 (291)
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and there exists an analytic function W of the complex variable
Z =X +1iy
such that
W(z) = u(x,y) +iv(x,y)

In particular, we can conclude from this that

2
2 2 2 2
= U +u =YV +V =#0

aw
dz

It follows from definition (54) and equations (288) to (290), (291), and (294) that

2

dw

au. +bu_ = pgylu)|—

x y 2 dz
2

dw

avy + bvy = qz(v) o
¢ = [py(u) +qy(v)] aw| *

1 1 dz

(292)

(293)

(294)

(295)

(296)

(297)

It follows from the definition of the derivative of an analytic function that equations (295)

and (296) can be written as the following single complex equation:

2
(@ +ib) W - (p, +iq2)li‘El
dz dz

(298)

Now equation (294) shows that dW/dz # 0. Therefore, it can be divided into both sides

of equation (298) to obtain
aw\"
a +ib = (py +iq )<._>
2 2\ "4z
Hence, upon taking the real and imaginary parts we find
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a= p2(u)uX + q2(v)vx (299)
b = pz(u)uy + qz(v)vy (300)

upon recalling that the derivative of an analytic function is independent of direction.
Equations (292), (293), (297), (299), and (300), in which Pys Pg; 4y, and q, canbe
any functions of their arguments and W can be any nonconstant analytic function of the
complex variable z, now give the most general forms that the coefficients of equation (31)
can have if this equation is to be transformable into a separable equation by a change of
variable of the type (55). However, it is again more useful to use these expressions to
obtain conditions for the canonical invariants. Upon differentiating equations (229) and
(300) with respect to x and y we find, after using equations (291) and (294) to simplify

2
_ dw
a, +by = [p'z(u) +q'2(v)] d_z\

Equations (287), (294), (299), and (300) also show that
a2 1 p2 <p2 +q2>‘iw_‘2
2 2 dz

Substituting these results together with equations (297) into the definitions (51) and
(52) of the canonical invariants of equation (31) shows that

Sp =0 (301)

and

2
1 1.2 1 1 2\ |aw
= |(p -_p'——p>+<q —-q'-—q>] I— (302)
/EK12242 175 22 &

Or upon defining the function & of u and the function ¥ of v by
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LTI o [N T =
= 1, 1 2
2() = py(u) - = Ph(W) -+ [pp(w)]

¥(v) = qy(v) - % ay(v) - i [az)]?

equation (302) becomes

aw|?
dz

Sg = [2W +TM)] (303)

Thus, equation (31) can be transformed by a change in the independent variables into
a separable equation only if there is an analytic function W of the complex variable z
and functions & and ¥ of u and v, respectively, such that its canonical invariants
satisfy conditions (301) and (303). The argument used in the hyperbolic case now suffices
to show that, if equation (31) can be transformed into a separable equation by changing
w its dependent and independent variables, then it is necessary that its canonical in-
variants satisfy conditions (301) and (303).

In order to see that these conditions are also sufficient, suppose that there exists
an analytic function W of the complex variable z and functions & and ¥ such that
equations (301) and (303) hold. Then it follows from definition (51) that condition (301)
implies that there exists a function w such that

(304)

It is easy to see from equations (47) to (50) and equation (52) that the change of variable
(refs. 3 and 4)

®/2y (305)

transforms equation (31) into the equation

v2

V+ fgV=0 (306)

where Vz is the laplacian
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2 2
9 L9
ax2 8y2

Or substituting for JE in equation (303) this becomes
2 aw |2
V2V + [B(0) + ¥ (V)] ‘_‘ V=0 (307)
dz

But it is shown in reference 1 that, upon introducing the new independent variables u
and v defined by equation (293), this equation transforms into the separable equation
Va

0 Vyy +[2@) +¥@)|V=0 (307)

It is also shown in reference 1 that, if any functions ¢ and iy which satisfy equations
(79) and (80) were used as the new independent variables in place of u and v, then equa-
tion (307) would still be transformed into a separable equation.

We have therefore established the following conclusions:

(C21) The canonical elliptic differential equation (31) can be transformed into a sep-
arable equation by changing both the dependent and independent variables if, and only if,
there exist a nonconstant analytic function W of the complex variable z =x +iy and
functions & and ¥ such that the canonical invariants JE and /E satisfy the following
conditions:

"E =0 (308)
2)
/E = [(I)(u) +\Ir(v)] l%llzv_l
where & (309)
u=AReW
v =FmW J

(C22) If the canonical invariants of equation (31) do satisfy conditions (308) and (309),
then this equation can always be transformed into a spearable equation by introducing both

a new dependent variable V defined by
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w/2y (310)

a=w

b =
“y

and new independent variables £ and 7 defined _by

£=9()
(311)

n = YV)

from condition (309).
Notice that, by choosing ®(u) =u and Y(v) = v, any equation which satisfies condi-
tions (308) and (309) can always be transformed into a separable equation by the conformal

transformation
Z - W

More generally, the change of variable (311) represents an orthogonal tranformation
and it is shown in reference 1 that the particular choice of the functions ¢ and ¥ mere-
ly serves to modify the scale factors of the coordinate geometry associated with the new

independent variables.

Direct Calculational Procedure for Testing /E

As was done in the previous cases, we shall now give an alternate form of condition
(309) which can be used to test the canonical invariant /E directly. In order to simplify
the following analysis, we shall assume that /E is analytic both in its dependence on x
and in its dependence on y. Actually, this restriction can be weakened considerably,
but it is not felt the additional effort is justified.

Suppose first that /E satisfies condition (309). Then, since W is nonconstant,
equation (309) can be written as
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aw
dz

=& ) +¥(v) (312)

But there exist functions & and ¥ such that equation (312) holds if, and only if,

2 [ f
9 E \oo (313)
du ov aw 2
dz

We shall be able to greatly simplify the analysis and use many of the results obtained
in the hyperbolic case if we perform an analytic continuation of the function -/E to com-
plex values of the variables x and y and introduce the complex substitution

zZ =X +1y
(314)
z¥=x - iy

It is important to notice that z* is the complex conjugate of z only when the vari-
ables x and y are real. Now when X and y are each allowed to range over the com-
plex plane, the variables z and z* can certainly be varied independently and we can
therefore treat them as independent variables.

Now suppose X and y are real variables and X =h +ig is an analytic function of
the complex variable z =x +1iy. If X* =h - ig is the complex conjugate of X, then
when the substitution (314) with x and y real is used to eliminate x and y in the par-
ticular formulas for X and X*, it will be found that the expression for X will contain
only z and the expression for x* will contain only z*.

Hence, if the variables x and y are continued analytically into the complex plane,
then X will be a function of the independent variable z only and X* will be a function
of the complex variable z* only. However, x* will be the complex conjugate of X only
when X and y are real, or equivalently, only when z* is the complex conjugate of z.
If P is any function of the complex variable z, we shall always denote by P* the func-
tion of z* which is equal to the complex conjugate of P when x and y are real (or
equivalently, when z* is the complex conjugate of z).

In view of these remarks, we see that when X and y are extended to complex
values, then W, dW/dz, etc. are functions of the independent variable z only; and W*,
(dW/ dz)* = (dW*/dz*), etc. are functions of the independent variable z* only; and, for
example, (dW*/dz*) is the complex conjugate of (dW/dz) only when x and y are
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restricted to the real line. In addition, the relations

u=_1.W +1W*1
2 2

and } (315)

W - W*

V=—21—J

still hold when x and y are complex. Since W is a nonconstant function of z only
and W* is therefore a nonconstant function of z* only, we can also take W and W*
as independent variables; and equation (315) shows that u and v can be treated as in-
dependent variables. We shall use the notation W' for dW/dz and (W*)' for
dw*/dz* = (dW/dz)*, etc.

Now the principle of analytic continuation shows that equation (313) must still hold
when x and y are continued to complex values. Equation (315) shows that

But
o1 8
W W' oz
and
2 _ 1 @
oWx (W) oz
Hence,
2 i 89 1 a8 i 8 3 2

du ov W' 9z W' gz (W*)' ogz* (W*)' oz*
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Using this in equation (313) we find

1 a1 o[ Fe |1 a1 8| LE
W' a2z W' oz W'(W*)' (W*)I dz* (W*)' 0z W'(W*)'

or, since (W*)' is indpendent of z and W' is independent of z*,

0 1 0 1 _ 0 1 d 1
9z W' "a'z—<v—v’- % E> Caz* (WH)' az* [(W*)' "(E]

Upon introducing the function S of z only by

2
S z(%) (316)

and according to our convention

5= [(wl*)':l

this equation becomes

zs(/E)zz +38'(f) +S" g = 284 fg) ,  + 3(S*)'(/E>Z* +EH g (31D

Z*z,

As in the derivation of equation (135) from condition (131), we can show that the
steps of this argument can be reversed to establish the following conclusions:

(C23) There exist a nonconstant and analytic function W =u +iv of the complex var-
iable z =x +iy and functions & and ¥ such that /E satisfies condition (309) if, and
only if, if, there exist a nonzero function S of ‘the complex variable z only and a non-
zero function S* of z* only which is equal to the complex conjugate of S whenever z*
is equal to the complex conjugate of z such that /E satisfies equation (317).

(C24) If nonzero functions S and S* can be found such that equation (317) holds,
then the analytic functions W of the complex variable z for which condition (309) is
satisfied can be calculated from equation (316). -

Thus, if the function S is known, conclusions (C21) and (C22) give a procedure for
calculating a change in the independent variables which will transform equation (31) into
a separable equation.
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Now equation (317) is essentially the same as equation (135) for the hyperbolic case.
Therefore, all the solutions to equation (317) can be found by the same procedure as was
used for equation (135). The remarks following conclusion (C9) apply to this case also,
except that, after the constants have been determined by substituting the solutions into
equation (317), it must be possible to adjust the constants so that S is not zero and S*
reduces to the complex conjugate of S when x and y are real.

Again, the two exceptional forms of the function /E for which the general proced-
dure will not work must be considered separately. Thus, when /E = 0, condition (309)
can always be satisfied. If f # 0, we define the function /E by

it

oZ oz*

. 1 911 9

JE 7. _[J_ jE] for /E #0 (318)
E E

or introducing the variables x and y this becomes

.1 [af1 %R o1 ¥
Ilg=—|—|(=——| +—|— — (319)
4fp |\ Sfg X Iy \Sfg o
In particular, this shows that like }E itself the function /E is real whenever the

variables x and y are real.

Now suppose there is a constant Co such that

/’E = ¢, (320)

Clearly, C, must be real. (Otherwise, the equation could not hold with x and y
real.) For the present purpose, we need consider only real values of x and y. If

o1 ME) a1 ME\_,

ox /E ox oy \SJg o
but this implies that there exists a nonzero analytic function X of the complex variable
z such that

Cy = 0, then

/E = 771‘X(Z)l2
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where T4 is a constant. It is clear that condition (309) will always be satisfied if we
take

I c, #0, equations (319) and (320) show that
ala/E+a 1afE_4c/
(2 7= oL 28 E
x\ fp 0x oy \fg °

It is shown in appendix I that the most general (real) solution tothis equation is

(L 02 em)®
- if frc, =0
2co cosh2 h
FE = 3 ; (321)
2
(h,)” +(h)
1 X y if fpc, =0
2Co cos2 h

where h can be any harmonic function.
It is easy to see from equation (294) that if we put

( 1

— for /Eco =0
2c cosh2u
o
B = ¢
1 for /Ec >0
2 o
L 200 cos” u

and h =u, then equation (321) satisfies condition (309).

By changing the harmonic function h it is possible to express the solution (321) in
many different ways. Several of these are given in appendix I. Thus, the second line of
equation (321) can be written either as

aw |2

dz

2
Zcou
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or as

[p(u’gZ,g:;) +P(V’g2; 'g3) ‘ dWl

200

where W =u +iv is an analytic function of z. It is easy to see that the first of these
satisfies condition (309) with &(u) = 1/2c0u2 and ¥(v) = 0, and that the second satisfies
condition (309) with &(u) = éo(u;gz,g3)/2co and ¥(v) = f0(v; 89, -g3)/2co. It is shown
in reference 2 that all the changes of the independent variable which will transform equa-
tion (31) into a separable equation when

1 2

E~ Zcu

dW
dz

are given by equation (122) which transforms this expression for /E into the form (121).

We have now shown that

(C25) The condition (309) is always satisfied if e1ther the 1nvar1ant /E or the func—
tion g defined by equation 1318) is equal to a constant. o

Now as in the hyperbolic case we again suppose that /E # constant, /E # constant,
and that the functions S of z only and S* of z* only are any two simultaneous solu-
tions of equation (317). The same procedure as was used in the hyperbolic case now leads

to the equation

2 K g 4 5ks = 2 K gx , srexgHy (322)
0z oz*
where
4 o
k = —_
/E 0Z /E
(323)

4 90
k* = '
/E oz* /E

Notice that since /'E is real for x and y real, k* becomes the complex conjugate of

k when x and y are real. This shows that the notation used herein is justified.
Now if k were zero, equation (323) would show that

90



3 -
—_ =0
0Z /E

Hence, we could conclude that for x and y real

ox oy

or /E = constant. But this is contrary to hypothesis. Similarly, it can be shown that
k* # 0. Therefore, the procedure used to derive equation (148) can be applied here to
show that if we define Sgs S1» and S by

(~ 2/5
(k*)3/5_?-_ .(ki_(_l_ kZ) —Ekz for K+0
oz* | K \k* 7/ _| 5
Ax for K=0
k* 2
L 7z
-
2/5
5 (k#)3/5 2 (k_*> _1[<_k_> k2/5] -k for K0
2 az* \ k K [\i* ,
5= < (325)
5_1 _a_[<_12>k2/5] for K =0
2 ,2/5 oz L\k*
\
~
2/5
5 kx5 2 Lli)__<£> for K#0
2 oz* | K  \k*
5y = < (326)
5K tor K=0
L 2 k*
with
Ks[i (k*)z*]
k*

then S must satisfy the equation

Z
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sOS + SIS' +szs" +0
Similarly, S* satisfies the equation

s§S* + s(S*) +S’2*(S*)" =0 (328)

where the coefficients s¥, s’i‘, and s’z" can be obtained from equations (324) to (326) by
interchanging the starred and unstarred quantities.

The solutions to equations (327) and (328) can now be obtained by exactly the proce-
dure as used for equations (148) and (152). We shall therefore not repeat it here. Since
an elliptic equation cannot be transformed into an equation which is weakly separable but
not separable, this completes our discussion of the elliptic case.

SUMMARY AND CONCLUDING REMARKS

Necessary and sufficient conditions which a linear second-order partial differential
equation in two independent variables must satisfy if it can be transformed into a separ-
able equation (or into an equation which is weakly separable but not separable) have been
obtained. These conditions together with the appropriate changes of variable (which will
bring the equation into separable form) are summarized in tables I and II.

In addition, a procedure has been developed for testing by direct calculation whether
a given equation of this type can be transformed into a separable equation, and a pro-
cedure has been given to calculate the new variables.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, January 14, 1970,
129-01.
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TABLE I. - TRANSFORMATION OF EQUATIONS INTO SEPARABLE EQUATIONS

Type of equation

Hyperbolic

Parabolic Elliptic
Pu_Pu,_ oUu . au Py .U, U v %y, . ey, ou
Canonical form —— e ta—=+b-=+cU=0 — +a——+b=+cU=0 —t— +ta—+b=cU=0
ax2 ayZ ax oy ax2 ox oy ax2 ay2 ox y
Canonical form | First "H = ay +bX JP =b "E = ay - bx
invariant
1 1,2 .2 2 {1 1.2 (% by 3 b 1 1,2 .2
Second Jo=c-=(@ +b)-2(°-b%) | fp=[=2c-2]a-[Z})|-la+Z -2 la+ Sp=c-=(a, +b)-=@% +b°)
H 2 XV g P \p 2 2b 2b ? b/ “E 2 Yoy
invariant x y
Functional forms | First Sy=0 =Y o240 Sg=0
of the invariants| invariant dy()
for equations 2
. 2 [
which can be Second Sy - [<I>(u) +\I'(v)] (ui _ uf,) So= [~1 j| LY RS +p{Y S = [cI:(u) + \If(v)] ﬂ’
transformed invariant v(y) x |2 \¥x . Px dz
into separable where where
N here
equations W )
u=lF(0)+lG(T) d;#0 u=ReW
2 2 v = JmW
v=1 F(o) - 1 G(7) and where W is any analytic
2 2 function of the complex vari-
g=X+y T=X-Y able z =x +iy with
F'#20 G +#0 dw/dz # 0
(1/2)w + (1/2)n|b| +6] 9
Change of vari- |Dependent V= ew/ 2U V=e U V= ew/ i)
able which variable |1 o000 where where
transforms
= = dx a=w,
differential a=wy o f a X
P b=-w b=w
equation into Yy ¢y y
W, = —
a separable X @
X
equation .
@
wy:n -'.NI_R(<p) +E A
vly 2\oy
b, b,
o=l 2(:-1212 ) -fa s XY V- (0, + 2
2 2 2b 2/ Y op
Independent £ = @u) where @' #0 ¢ = glx,y) £=3() where §'#0
variables® ~
n=Pv)  where P %0 n=Uy)  where P #0 7= v) where ¥'#0

3, ¥,%,%,F,G,R,7,d;, and ¢ can be any functions of their arguments.



TABLE II. - TRANSFORMATION OF EQUATIONS INTO EQUATIONS WHICH

ARE WEAKLY SEPARABLE BUT NOT SEPARABLE

Type of equation, hyperbolic

Canonical form

2 2
_aU _aU+aﬂ+b@
ax2 8y2 ox ay

+cU=0

Canonical First invariant

invariants

"‘H =ay +by

Second invariant

jH=c-_;-(ax+by)-i(a2-b2)

Functional forms of the invariants
for equation which can be trans-
formed into an equation which is
weakly separable but not
separablea

S = EWF(@G(7)

Ay = Y(WF'(9)G(7)

where
v=F() +G(1), v=F(), or v=G(7)
O'=X+y, T=X-y
F'#0, G'#0, and & #0
LD
V=e U when v=F +G or when v=F
(1) _a_1.,
wy =3 ZG(T)'/'<I>(v)dv
for v=F+G or v="F
1M_ b, 1
wy += G'(7) /ti)(v) dv
o)
V=e U when v=F +G or when v=G

w(2)=3 +1F'(0) f@(v) dv
X 2 4
for v=F+G orv==_G

@_ b, 1
wy —-—2-+—4-F(0')/<I)(V) dv

Change of variable | Dependent
which transforms variable
differential equa-
tion which is
weakly separable
but not separable

Independent
variables®

£ =o(u) where @' #0

7 = YW) where ' #0

a'qz, Y, ®, ¥, F, and G can be any functions of their arguments.
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APPENDIX A

DERIVATION OF EQUATION (140) FROM EQUATION (135)

For brevity, I will be used in place of }H in this appendix. With this notation
equation (133) is, after dividing through by I,

I I I I
2(_°£{>s +3<_°> S' +8" =2(_T_T_>T +3<_T> T' + T (A1)
I I I I

Differentiating both sides of this expression with respect to ¢ and 7, we find

2 [ /I I 2 [ N1 I
7 12(Z%)\s+3{Z)s| =2 _|2( T} T+ 3( I\
00 oT I I 00 ot I I

Hence,

Upon defining p by

we find

I I 1 I
2(ﬂ> S + 2(ﬂ> + 3pglst +3us = 2<ﬂ> T + 2<ﬂ> +3u_|T" +3uT"  (A2)
I T I T 1 oT I g

Since

and
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equation (A2) becomes

I I I I
2(51’_") S + |:5u0 +4<.£'.> u]s' +3us' = 2<?> T + |EiuT + 4<I—T> LJT' +3uT"" (A3)
oT oT

Now multiplying equation (Al) by 3u and subtracting the result from equation (A3),

we obtain

I I [TH | I I TR |
2u[i<_‘.’_°> , 3<.°_0> S + 5u<——0 - ﬁ)s' =24 l<ﬂ> - 3<ﬂ> T + 5u<—7— -1 (A9)
[TAANG Qi I U I w\I oT I [ I

Now
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Interchanging ¢ and 7 shows that

When these results are substituted into equation (A4) we obtain, after multiplying through

FOlFRFFOL oy

by I°,
Since we have put I = /H and p = (IO/I)T, definition (136) shows that

(5

and therefore equation (A5) is the same as equation (140).

97



APPENDIX B

CONDITIONS FOR WHICH COEFFICIENTS IN EQUATIONS (148) AND (152) VANISH

Since k1 #0 and k2 # 0, it follows from equation (147) that the condition t(z) =0

l;{il(kl);lT #0

and that there exists a nonzero function Ay of 7 only such that

5
==
k
1
5 = )\1(7) (B1)
1
—(k
[kl( 1>"J
T
Hence, it follows from equation (146) and equation (B1) that the condition t(l) = 0 implies
that
51 1 8 |1 (*1\(k2,2/5 K -0
2 271 30|, 2/5\k, \ic, 2 I
[i{_(kﬁ} K2/ P \kg/\ey *

1 g
T

implies that

but this shows that

i[_k_l 1(53)] _o
oo k2 oT k1

It follows from this that there exist a nonzero function Ao of 7 only and a nonzero func-

tion Y9 of o only such that

ko
—2 =2y (1)79(0) (B2)
kq
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and that

)] ) @

It now follows from equations (145), (B2), and (B1) that the condition t(o) =0 implies
that

k
K2 a1 ;\2( 2), ~2(k,) =0
l:_l_ k)] 90 \2g k2 5 T
k (10 T
1 T

Hence, upon using equation (B3), this shows that

i

This now shows that there exists a nonzero function Y4 of o only such that

5 5

Aol 1 _
— E{—l(k]_)o]T = 74(0)

kg

(W)

Hence, upon substituting for k; and k, from equations (B1) and (B2), we find that

Po]° 70
)\1(7) [72(0)]3

We conclude that there exists a nonzero constant my such that
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and

Hence, equation (B1) becomes

or using equation (B2)

o)
T.

This equation can also be written as

5
-1
2 2 5
o |(v3\ (vaes _2°(72 2
=—| —¥;
oT 3 3 T 3
x5 " ) 1\n3

But this is essentially Liouville's equation, and therefore its most general solution is
(see eq. (138))

3
A h' |
K2 = -1, 2(7) |5 257500 (155)

750 | [r300) - 2]

and equation (B2) now shows that

ro(7) - 070

_ (156)
750 | [r3@) - 24m)?

2
ko =-my

Thus, @ =t ~t®) _ 0 oniy it k, and k, satisfy conditions (155) and (156). It is an
easy matter to verify that the steps of the preceding argument can be reversed to show
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that equations (155) and (156) are also sufficient conditions. It now follows from the
symmetry between equations (145) to (148) and equations (149) to (151) and between equa-
tions (155) and (156) that (@ = ™) =@ _ g it and onty if, 5@ = s 2 5@ _ 0. 1tis

also clear that equations (B2) and (157) are necessary and sufficient conditions for the
coefficients in equations (148) and (152) to vanish.
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APPENDIX C

CALCULATION OF S AND T WHEN COEFFICIENTS
OF EQUATIONS (148) AND (150) ALL VANISH

Upon substituting equations (155) and (156) into equation (142), we get

AY y' >\" ;yf
0 S 373 _ 0 373
=< (.__) —— == g T) | ———

oo 2 ] 2
72 (7’3 - 7\3) T (73 - )\3)

Carrying out the indicated differentiations and rearranging gives

1

Yo - Aq [SY! Yq - A
373273 L a8 o) 223 T3 maan) + 2(TAAY)
1 3 A.' 2 3 2 3
v3 Yy Y2 3

Differentiating equation (C1) with respect to both ¢ and 7 gives

or

1

S'}/l \i
11 1|1 N
| 1 ( 3> - (TApNY)
Y3 (Y3 \72 303

(C1)

since the left side is a function of ¢ only and the right side is a function of 7 only there

exists a constant, say To, such that

1 137?3q
BB\
313\ 72 /]

11 1]
Tl (AgA8T) | = -7y
3|*3 )
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Upon integrating these two equations, we get

Sy, =
__§=_.g 7§'+7T3‘)’3 -{-11'4 (161)
Y9 2

T
2

where g through = g are constants.
Upon substituting these results back into equation (C1), we find that

Tg =-Tg
Ty =-Tg
50
2.2
T)\z)\h = ~—2— Ag - Tghg = Ty (162)

103



APPENDIX D

DERIVATION OF EXPRESSION FOR fp

We first differentiate equation (231) with respect to x to obtain

1., 1
o (o (2™ e (273 2y
—la +—= =—————(q)x) | ——— | Oyx - (P
ax 2D d, d, ¥x).

Next squaring both sides of equation (231) gives

Finally, multiplying equation (231) by —bx/ 2b and using equation (230) gives

1

d, -1 a a, - Lar
b/ 1P\ [2 972 1 9172 o) o bylog
-Zla+s =l o o =\ oy (2
b\ 2 b d 2 d d 2

1 Px

Upon adding these three equations, we obtain

1 1 1
2 d, - = a d, - = dt, d, -~ a
b b b b 2 1 2 1 ar (%2 1
i a+_x +}_ a_+_§ __X a+_x = 2 + = 2 +.1 _]: _____2 —_— ¢2
9x b/ 2 2b 2b %b d 2 d 2 q, dy x

—
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Using equation (230) to eliminate gpxx/ ¢, yields

|

1
2 d, - = d 2 2
b. b b b 2 1 d a ds
i a+_}5 +l a+_x - X a,+._§ _—2 +_1_ _g. - _1._ gp)z{ +1’. _]‘b(p
ax\ 20/ 2 2b) 2b 2b dq 2 \qy 2d, 24, 7

|

1
a,-1a be 2
2 1 @ y, 2
(22, +bx(_y>_( )e b (ﬁ)
4 )  Px 2\
1 A
4, -1q 2
X
d, 2 |\q, 2d,
@ (d-=dy 2 2
L 2 Moo -blxy b (qo)
d. vy o, s\, 1
2 dq d, Py 2 \gp (D1)

After differentiating equation (226) with respect to y, we obtain

_b_y:l'_+2i}{_y_.—_c_l_']l
b

v Px dl Y
Upon using this equation to eliminate Py y/ Py and equation (226) to eliminate (<px)2 in
equation (D1), we obtain, after rearranging the left side and dividing by b,

\

1
2 d, - = d! 2 2
b b 2 1 d d!
19_<a+,}5>+1 az_(_x> 1g( 22 1)1 <_2><_1>
b |ox 2b 2 2b v d 21\d 2d
1 1 1
1
d, - = df 2
{22, ey v Yy
dy Yo 2\g, 2v 2b

Subtracting this result from equation (229) shows that
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d

b b b 2'1"'1 2 2
Q e

l 2c-i a +- =X -1 a2- X -l:lR((p).p __L 10} -E 3 -l'+_§

b ax 2b/ 2 2b 2b v d; Y 2\ v v

where we have defined the function R of ¢ only by

1

1
- 2 ! 1|/ 92 2 dy
R= 2d3 - dl d— +E —_ - —
1 d;/ \2dg

After differentiating this result with respect to x, we obtain, upon recalling that eg
depends (implicitly through y) only on y,

14
b b b 2 1
}.Zc-_laz-_x _i a+_§ -_X-lR = ____2_¢ -Ef_
b 2 2b ax 2b 20 v dy y 2 \0y
X b
(D2)

Differentiating equation (231) with respect to y shows (since d1 and d2 are func-
tions of ¢ only) that

d, - Lar

b 2 1
(a +_x_> =2 - b<ﬁ> (D3)
2b y dq Py .

X

Upon recalling definition (46) and noting that (by/b) = (bx/b> , we find, after sub-
X
tracting equation (D3) from equation (D2), that y

Sp = [‘—1’ R(QD)}X + E(%)l, .

which is the desired result.

2

b(% (D4)
2\ oy

X
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APPENDIX E

DERIVATION OF ALTERNATE FORM OF CONDITION (233)

Suppose first that P, * 0. Now there exists a function d1 of ¢ only such that
equation (233) holds if and only if,

2 b 0 b
xop\oz) V2]
Y Vex Vex

Upon differentiating by parts, shows that this is, in turn, equivalent to

d b
v \vp X
X by

Another differentiation by parts, we find that this is equivalent to

2
2 (f”_y) v <ﬁ>i<2>
2.4 > Py ] Y \V
Hence, we can conclude from this that, if qoy # 0, there exists a function d1 of ¢
only such that equation (233) holds if and only if,

@ b
b(_z 1% b(ﬁ) =1V<E> (E1)
Py N 2 b Py 2 \v y

Now suppose that ¢_ = 0. This implies that ¢ is a function of x only. If there exists
a function d1 such that equation (233) holds, then this implies (since d1 depends on x
or y only implicitly through ¢) that d/v is a function of x only. Hence,

),

But this implies that equation (E1) holds. Conversely, if equation (E1) holds, then the
fact that goy =0 shows that
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Vy
since v+ 0. Thus, b/v and @y are functions of x only. Hence,

b
2

V¢X

is a function of x only and therefore (since ¢ is a function of x only) a function of ¢
only. This shows that there exists a function d1 of ¢ only such that equation (233)
holds. We can therefore conclude that there exists a function d1 of @ only such that
equation (233) holds if and only if, equation (E1) is satisfied.
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APPENDIX F

APPLICATION OF TRANSFORMATION (240) TO EQUATION (30)

It follows from equations (41) to (43) and (234) that under the change of variable (240)
the coefficients '5, ‘B’, and ¢ of equation (40) are given by

a=- <wx +1 3) (F1)

P=b (F2)

and

i
Do
)
+
N |
g
e
+
IR
o
o |
\/M
]
[\CR
[V
nNo
I
(o)
/g\
)
+
Do =
o |
+
D
\/
g
»
+
D=
o
T [
+
L
]

Upon substituting in definition (235) this becomes

2

w . b
~ 1 ™x 1
2% =b[Q+—X-w \-{w . -2 20w -Zb

% Y ("x 2 b * 2 Y)

Hence, equations (238) and (239) now show that

T2 [R((p) +1 v'il (F3)
2v 2

Substituting equations (F1) to (F3) into equation (40) yields
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[R(q)) +_;. v'} V=0 (241)

b
1 “x b
V. -{w, += Z21|V_. +bV._ +—
XX (x 2b>x Y ooy
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APPENDIX G

DERIVATION OF EQUATION (251) FROM EQUATION (249)

Upon differentiating equation (249) with respect to x, we get
()., - PTyyx - BxTyy = byTay - by Ty = (T4 P>Xx

This equation can be rearranged to obtain

b b b
ve) -b(T, +1ZXT) _lp 1 yp(E) T +R(ZX) ¢
Plyy *ap ) 2NV bjy ¥ o2\b),

Hence,

[ b b_b b b

0 1"k 1 1 X"y 1 X X
T ) =(v ) s b[(T,  +=2T) |[-=b. T _ -2 257 +2b (E) +pl T
(/Pxx }ny oy <x > b )y 5 X VY 3 vy yby by

[ b b b
=(v/P> -ibTX+l_’ET -_Xi(bT>+lb_x T
Xy dy Zbyzbayy2by
y

Upon using equation (249) to eliminate (bTy) in this equation we obtain
y

bX bx bx
(v/P)xy = V/P> (T/P)XX - (T/P)X + b (TX = T)y -% b<?>y T

y

Substituting equation (250) gives
b b
050, ()] -
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oz 4]}

Differentiating equation (250) with respect to x yields

[V</P)X] -

by b ,_Vb B by
, (V%’P)Y*H ?yﬂ ‘ZE’PX 2 ’P] x
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Now

B 2
=ﬁ-vvﬁ-1(ﬁ> 4(31) (&)(ﬁ)
b
2 _b 2\b 2 vy b b v

2 2
b b b
=V'"+Zv' v -E)ﬂ + Vv A - Yy
2 2b 2b 2b 2b

Upon substituting this result into equation (G2) and rearranging, we obtain

9 2
b b b b b b
1 X 1 X y v
2v' <~ / -.____/ ¥ X + V<= / __/ AR 4 +—
b|:< P>x % 4 20 \2b b ( P>x % Pl 2  \2b 2
y

y

I
T | =
y—
S,
o
»

1
2|
o

S,
1 9
"
1
N | =
o'
o |
N
S——
]
]
DO | =
cIN:
~—
<
L]

~

il
[o gl S
—
S
9
w
[]
D1
=
1
N | =
S
o &
~_=
o |
~————
™
1

1]

T =
=
Sa,
o
1
¥ |
LY
1
N c.‘
%|g
+
@

[
S~——
[\V)
=
(5)
©

Hence, if we define /P by
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equation (G3) becomes

114

(252)

(251)
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APPENDIX H

PROOF THAT EQUATIONS (249) AND (250) CAN ALWAYS BE SATISFIED |F(jp)x =0

Let the domain of definition D of equations (249) and (250) be divided into two sub-
domains D¥ and D~ such that

b(x,y) =0  for (x,y)€D"
and
bx,y) =0  for (x,y)E€D”

We shall show that if </P> = 0, equations (249) and (250) always possess nonzero
X

solutions which contain three arbitrary constants for (x,y) € D*. A similar proof will
show that they also possess nonzero solutions for (x,y) € D". We can conclude from this
that these equations possess nonzero solutions in D which involve three arbitrary con-
stants but which may have to be specified by different functions in different parts of D.
Hence, suppose that (x,y) D* and </P> = 0. Then there exists a function y of
X

y only such that /P = .
Both equations (251) and (257) now reduce to the same equation, namely,

2vty + vyt +-1- v =0 (H1)
2

Now the derivation of equation (251) from equations (249) and (250) shows that for
every solution T of equation (250) (and this equation certainly always possesses a solu-
tion when v is any given function of y)

3, )

VB Ea; _J_B [(V /P>y - (bTy>y - (T/p>}J

2v'y + vy +§ v (H2)

since b = 0.
Now equation (H1) shows that equation (257) has infinitely many nonzero solutions.
(Recall that a third-order linear ordinary differential equation has three linearly inde-
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pendent solutions and that any linear combination of these solutions is also a solution.)
Hence, let the function v of y only be any solution to equation (257).
Then equation (H2) shows that there exists a function r'p of y only such that

(vop), - (bTy) - (Tfp) =) VB (H3)

for each solution T of the equation

b
X o

T, +=- = (H4)
b

X

ol

D f
<

o | &
1

[N
<

(This equation certainly has a solution T.)
It follows from definition (252) that

11 1P i
Y(y) —W <—% /P>x E%)y (H5)

Now let the function p of y only be any solution of the ordinary differential equation

Pyy *¥P =T (H6)
and define the function T() by
Vb

Hence, the function T(O) can involve two arbitrary constants.
Substituting equation (H7) into equation (H4) shows that

b
@, 1001, %y 1, ()
2 b 2 b 2

Substituting equation (H7) into equation (H3) shows that

(vo /P>y - [bT(O)y]y - [T(O) /IL =rq(y) Vb - [b (L\/Bu -p (%_g /P>x (H9)
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Using equation (H5) to eliminate (/P/ \/13) in equation (H9) gives
X
Vo (rp - p¥) - [b (£ -_]l<_b_Y_>p
T Vb 2 \vb
Y y y

i1, -2 G
y

y

(vot8), - [0 - AR

]

VB (rT -pY - Pyy)

Hence, equation (H6) now shows that

("o/P)y - [bT(O)y}

Thus, we have shown that, if </P> = 0, then for each solution v, of the ordinary
X

y ) [T(O)JI)} X (10

differential equation (257) there exists a function T(O) (containing two arbitrary constants)
such that A and T(O) satisfy equations (249) and (250). Notice that this proof was con-
structive and can therefore be used in practice to find the function T 0 once a solution
v(o) to differential equation (257) is known.
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APPENDIX |

SOLUTIONS TO ELLIPTIC LIOUVILLE'S EQUATION

The elliptic form of Liouville's equation is

(A 2Ly 1)
ox\U ox oy \U oy

where ¢ is a constant. Let
Xy = h1 + igl
be any nonconstant analytic function of the complex variable
zZ =X + 1y
and let H be a nonzero function of h1 and g1- Put

2

U=H (12)

dz

Then since In | Xm/dzl is a harmonic function,

i(.l ﬂ) +_a_<i ﬂ) =_3_<_1 E) +_a_<l §E> -
ox\U ox oy \U oy ox \H ox oy \H oy
Hence, equation (I1) becomes
d G 8H>+ J (l aH>:COH 13)
ohy\H oh, | 3g, \H dg,

If we put H=F, where F is a function of h1 only, then equation (I3) becomes

2

) <_1 aH>+ ) <i 8H>
dh \H oh, | 2g;\H 9g;

dx

2
L )
.F FZ
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Hence, upon setting F' = P, we find

Frr=p 4P

dF

and equation (I4) becomes

1140%) _P2_ .
5 - Ao o O

2 F dF F2

or

2

=P

2
(7 = F%(2¢c F + cl)

where cq is a constant of integration.
This shows that

+ .._..___d_]'j_— = hl + Cz
F '/2cOF +cq
Thus,
1 2¢c F
cF+e
+2 tapnl [0 71 g ¢, #0
Vcl ¢
hl + C2 = ‘
+ _2_. L if C1 =0
L Ve VF
Hence,
r 2
‘/c
-2 < 1 _ 1 . if cy # 0
c 2 c
o cosh2 l:_—l (h1 + 02}
F =4 2
2 if cq = 0
CoBy +Co)
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The solution (I2) of equation (I1) is therefore

2 2
([ (Y]
-2 2/ ldz if ¢, #0
c c
o cosh2 [ﬂ (h1 + CZJ
2
U :ﬁ (15)
ax, |2
l _ldz | if cy = 0
C 2
o (h1 + 02)

Now put Cq = lcll and define the harmonic conjugate functions h and g by

£c3(h +ecy))  if ¢y #0
5 (Pt e 1

h =
h1+c2 ifcl=0
‘/c
3
g if ¢, #0
2 1 1

If we define the analytic function X of the complex variable z by
X=h+ig

the solution (I5) becomes
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( %2
|2 tde if ¢, >0
c 2 1
o cosh™ h
ax |?
U=+ 2 la it ¢ =0 (16)
c 2 1
o h
ax|?
—2— dz if ¢, <O
c 2 1
\_ O cos" h

for any nonconstant analytic function X. Actually, since the analytic function X is quite
arbitrary, the expressions on the second and third lines of (I6) are the same, for if we
put X =1/iln Xg) h2 = /Qexz where X9 is any analytic function. Then,

Pol" _ gitxx®) |ax |2

dz

dz

cos2h o (eih + e-ih>2 . {ei[(X+x*)/2] . e-i[(x+x*)/2]}2
e re ) -y :

. . 2
_ ei(X*-X) <el.x + e—l_x*>
2

2
= ei(x*-X) XZ +X)2k
2
= el(X*‘X)(h2)2
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Hence,

2
Yol ax)?
dz dz

(hz)2 cos2 h

Notice that when the solution U is given by the first line of equation (I6)

Uc =0
and when the solution U is given by the second (or third) line of equation (I6)
Uc =0

Thus, these forms of the solution cannot be transformed into one another simply by
changing the arbitrary analytic function X, and they therefore represent totally different
expressions for the solution. Hence,

r ax|?
d
.2 19z if Uc, =0
c 2
0o cosh™h
v=< (17)
ix_z
2 ldz if Uc, =0
c 2
_ "0 cos” h

for any analytic function X.

We shall give an alternate derivation of equation (I7) and at the same time demon-
strate that this is the most general real solution to equation (I1). It is shown in refer-
ence 3 (p. 194) that the general solution to equation (I1) is

% dA
_§_ dz dz* (I8)

€ (x +A)2

U=

where X =h +g is any nonconstant analytic function of the complex variable z and A
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is any analytic function of the complex conjugate variable z* = X - iy. This solution is
not real valued, however, unless the functions X and A are related. In order to find
this relation, notice that for any function A there exists an analytic function I' of the
complex conjugate variable X* such that

T[x¥(2%)] = T(z*)

Hence, equation (I8) becomes

dx dx* o, |dX 2 ™
*
U =_§ dz dz _ dz (19)
¢ X +T)2 (X +T)2
where
I = dI’ +0
dX*
Now U is real if, and only if,
I _ (1"')* (110)
(X + )2 (c* + TH)2
or

(1“1)1/2 (]_"*v)l/z
Now this equation can be extend to complex values of h and g, and the variables X and

X* are then independent. Recalling that I'* and (I'")* are functions of X only, we
find, upon differentiating equation (I-11) with respect to X*, that

B I O S S
(r\v)l/z 1-.,)1/2 (1“*')1/2

Upon differentiating again with respect to X* we obtain
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_1_‘__ 1 o —_1— t o
(r')1/2 VI

1t 1
Now it [1/()1/2]" % 0, this equation would show, upon division by [1/(I")/2]", tnat
X was equal to a constant. Since X is a nonconstant function, we conclude that

1 (X3 o
[(ml/ ’J

Upon integrating this equation, we find that

_____*1 +Cgq if ¢y 0
clx + Co
I'= (112)
* 3 -
c4X +Cy if c1 =0

where ¢y to cg are constants of integration. Upon substituting these results into equa-
tion (I11) we find that

(03 +X)(c1X* + 02) +1 ) (c§ + X*)(ci"X + ci‘) +1

(113)
Y4 | Aai
and
X+cX*¥+c X* 4 c¥X + c¥
4 5 _ "+ % (114)

VC 4 cz
Differentiating equation (I13) with respect to X shown that

* (X ok
c X* + g ) cl(X + cg)

va 4

Hence, ¢, is real and Cy = clcg.
Equation (I14) shows that there exists a real constant Cq such that
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cy=¢
and a real constant Cq such that
-ic
_ 6
Cg=¢€ Cq
Hence, equation (I12) becomes
f
1 .
Cqg +———— if Cy # 0
c (X +co)*
1 3
r= ﬁ (115)
—1206 -2ic6
% i e
G X* + 207e if c; =0
where cy» Cgo and c, are real.
Upon substituting equation (I15) into equation (I19), we obtain
(
. ax |?
c
1 dz if ¢, #0
R 9 2 1
(cllx + 03‘ + 1)
U = <
ax
8 dz if ¢, =0
c . . ]2
(] < icg > icg )
L |:e X+c,7 + \e X+c7

Hence, upon defining the analytic function X1 = h1 +1igy by
|01|(X+c3) if ¢;#0

X179 .
icg
e X+c,7 ifcl=0

we obtain
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Notice that, for the first form of the solution (I16), Uco = 0; and for the second two

if c1>0

(116)

forms, Uc0 = (0. In fact, these latter two forms are equivalent since they can be trans-

formed into one another by the conformal transformation

Hence,

1-X
Xz=
1+X.2
2
.8 dz if Uc. =<0
S 9 2 0
(|X1| +1)
ax, 2
2 ldz if Uc =0
C 2 0,
o (hy)

(I17)

We have already shown that the second form of the solution (I17) is the same as the
second form of the solution (I7). We shall now show that the first form of the solution

(I17) (which is the form given in ref. 13) is the same as the first form of the solution (I7).

To this end put
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X=InX

where X =h + ig, and obtain

4 4 4 o~ (X+X¥)

(5l 1) @ o) 2

SXHX* {e(X+X*)/2 +e—|:()(+)(*)/2]}2 cosh® h

2 2
_ e.x+.x* ax
dz

dz

which proves the assertion.

Hence, we conclude that the most general real solution to equation (I1) is given by
equation (I7), with X = h +ig an arbitrary analytic function of z.

There are many different expressions which can be given for the solution (I7). These
can be obtained by varying the arbitrary function X. For our purposes, the most useful
of these, which is an alternate for the second form of equation (I7), is the one which is
analogous to that obtained in the hyperbolic case. To obtain this expression, it is
more convenient to start with the forin of the second part of equation (I7) given in the cen-
ter of equation (I6), which is

ax |
u=2 19z (118)
<, h2
or, equivalently,
ax |
y-28 _1dz (119)
i (x +x*)2
We now define the analytic function W = u + iv of the complex variable z by
0
W(z) =2 - 1 at (120)
4‘“ - gt - g3
ix(z)
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where g9 and gg are real constants and the path of integration may be any curve which
does not pass through a zero of a3 - g2t - 83 Then (ref. 12)

. 1
1X = (§O<-2— W;gs, g3>
Now it is shown in reference 12 that f)(Z) is real when Z is real. This shows that

[fo@)]" = gz

Hence,
ik = 1w
-1X —P EW ’g21g3
Upon using these results in equation (I19), we find
WA
2 dW 2
c dZ 2
o} 1 1
~ W) - — WH*
26 - 9

The results of example 1 on page 456 of reference 12 now show that

U=-2

2 1 2
el
=Ci @O(u;gz,gg,) - W(iv;gz,gg,ﬂ ,%ZVZ'Z

(o}

But example 2 on page 439 of reference 12 shows that
§O(v;g9,83) = -§0(v; 89, -23)

Hence,

128



2
U= f’; [§° W5 25, 85) + §O(7; 85, -€3)] |°;—‘;V| (121)

This form of the solution to equation (I1) could also have been obtained by choosing the
function H to be of the form

H(hla gl) = F(hl) + G(gl)

It is not hard to show by using the results on page 453 of reference 12 that, if we had de-
fined the function W by

+#x(z)
W(z) =2 _ ,_7_v1_ _ dt (122)
'la t4 + 4a t3+6a t2 +4a,t +a
0 1 2 3 4

%o

(where ag to a, are any real constants) instead of by equation (I20), then there would
still exist real constants g9 and g3 such that equation (121) holds.
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APPENDIX J

SYMBOLS

coefficient of first derivative in general partial differential equation
coefficient of first derivative in canonical partial differential equation

transformed coefficient of first derivative in canonical partial differential
equation

coefficient of first derivative in general partial differential equation

coefficient of first derivative in canonical partial differential equation

transformed coefficient of first derivative in canonical partial differential
equation

coefficient of linear term in general partial differential equation

coefficient of linear term in canonical partial differential equation

transformed coefficient of linear term in canonical partial differential equation

constant

domain of definition of differential equation

functions of § for r=1, 2, 3, ...

functions of n for r=1, 2, 3, . ..

function of o

function of £ and 7

function of T

Im X

constants, r =1, 2

function of 1 only in trial solution

ReX

special notation for canonical invariant used in appendix A

V-1

canonical invariant

canonical invariant

index in operator L(j) (can take on values -1, 1, 0)



R A

g £ <

<@

quantity defined in terms of canonical invariant

quantity defined in terms of canonical invariant

quantity defined in terms of canonical invariant

quantity defined in terms of canonical invariant for r for r=1, 2
linear operator defined by eq. (54)

constant

function of u for r =1, 2

Weierstrass fJ-function

function of v for r =1, 2

function of o, function of complex variable z

coefficients in ordinary differential equations for r =0, 1, 2
function of 7

variable of integration

coefficients in ordinary differential equations for r =0, 1, 2
dependent variable

transformed independent variable

transformed dependent variable

transformed independent variable

analytic function of the complex variable z

function of x and y defined in terms of u and v by eq. (193)
independent variable in canonical partial differential equation
coefficients in ordinary differential equation for r =0, 1, 3
independent variable in canonical partial differential equation
complex variable, X + iy

coefficient of second derivative in general partial differential equation

coefficient of mixed derivative in general partial differential equation

coefficient of second derivative in general partial differential equation - general

purpose function of o

independent variable in general partial differential equation

Saax
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A function for transforming dependent variable - general purpose function of 7
n special symbol used in appendix A

£ independent variable in general partial differential equation
E function of £ in trial solution

T, constants for r=1, 2, 3

o X+y

T X -y

i3 function u

Q function connecting ¢ with x and y

X function of the complex variable z

R4 function of v

1] function connecting 7 with x and y

Q defined by jP‘= 0/ ox

Q(r) quantities depending on invariant ¢ for r =1, 2

w function used in transforming dependent variable
Subscripts:

E elliptic

H hyperbolic

P parabolic

Superscripts:

* complex conjugate or quantity which reduces to complex conjugate when independ-
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ent variables x and y are real

denotes differentiation with respect to argument (prime)
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